Skip to main content
Log in

Adaptive hybrid error correction model for video streaming over wireless networks

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The Hybrid ARQ (HARQ) mechanism is the well-known error packet recovery solution composed of the Automation Repeat reQuest (ARQ) mechanism and the Forward Error Correction (FEC) mechanism. However, the HARQ mechanism neither retransmits the packet to the receiver in time when the packet cannot be recovered by the FEC scheme nor dynamically adjusts the number of FEC redundant packets according to network conditions. In this paper, the Adaptive Hybrid Error Correction Model (AHECM) is proposed to improve the HARQ mechanism. The AHECM can limit the packet retransmission delay to the most tolerable end-to-end delay. Besides, the AHECM can find the appropriate FEC parameter to avoid network congestion and reduce the number of FEC redundant packets by predicting the effective packet loss rate. Meanwhile, when the end-to-end delay requirement can be met, the AHECM will only retransmit the necessary number of redundant FEC packets to receiver in comparison with legacy HARQ mechanisms. Furthermore, the AHECM can use an Unequal Error Protection to protect important multimedia frames against channel errors of wireless networks. Besides, the AHECM uses the Markov model to estimate the burst bit error condition over wireless networks. The AHECM is evaluated by several metrics such as the effective packet loss rate, the error recovery efficiency, the decodable frame rate, and the peak signal to noise ratio to verify the efficiency in delivering video streaming over wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Feher, G., Olah, I.: Enhancing wireless video streaming using lightweight approximate authentication. Multimed. Syst. 14(3), 167–177 (2008)

    Article  Google Scholar 

  2. Tsai, M., Chilamkurti, N., Park, J., Shieh, C.: Multi-path transmission control scheme combining bandwidth aggregation and packet scheduling for real-time streaming in multi-path environment. IET Commun. 4(8), 937–945 (2010)

    Article  Google Scholar 

  3. Han, R., Messerschmitt, D.: A progressively reliable transport protocol for interactive wireless multimedia. Multimed. Syst. 7(2), 141–156 (1999)

    Article  Google Scholar 

  4. Ding, J., Tseng, S., Huang, Y.: Packet permutation: a robust transmission technique for continuous media streaming over the Internet. Multimed. Tools Appl. 21(3), 281–305 (2003)

    Article  Google Scholar 

  5. Nafaa, A., Taleb, T., Murphy, L.: Forward error correction strategies for media streaming over wireless networks. IEEE Commun. Mag. 46(1), 72–79 (2008)

    Article  Google Scholar 

  6. Argyriou, A.: Cross-layer error control for multimedia streaming in wireless/wireline packet networks. IEEE Trans. Multimed. 10(6), 1121–1127 (2008)

    Article  Google Scholar 

  7. Nguyen, D., Tran, T., Nguyen, T., Bose, B.: Wireless broadcast using network coding. IEEE Trans. Veh. Technol. 58(2), 914–925 (2009)

    Article  Google Scholar 

  8. Dan, G., Fodor, V., Karlsson, G.: Robust source-channel coding for real-time multimedia. Multimed. Syst. 13(5–6), 363–377 (2008)

    Article  Google Scholar 

  9. Soltani, S., Radha, H.: PEEC: a channel-adaptive feedback-based error control protocol for wireless MAC layer. IEEE J. Sel. Areas Commun. 26(8), 1376–1385 (2008)

    Article  Google Scholar 

  10. Sarkar, J., Sengupta, S., Chatterjee, M., Ganguly, S.: Differential FEC and ARQ for radio link protocols. IEEE Trans. Comput. 55(11), 1458–1472 (2006)

    Article  Google Scholar 

  11. Tsai, M., Shieh, S., Ke, C., Deng, D.: A novel sub-packet forward error correction mechanism for video streaming over wireless networks. Multimed. Tools Appl. 47(1), 49–69 (2010)

    Article  Google Scholar 

  12. Tsai, M., Shieh, C., Hwang, W., Deng, D.: An adaptive multi-hop FEC protection scheme for enhancing the QoS of video streaming transmission over wireless mesh networks. Int. J. Commun. Syst. 22(10), 1297–1318 (2009)

    Article  Google Scholar 

  13. Moid, A., Fapojuwo, A.: Three-dimensional absorbing markov chain model for video streaming over IEEE 802.11 wireless networks. IEEE Trans. Consumer Electron. 54(4), 1672–1680 (2008)

    Article  Google Scholar 

  14. Le, L., Hossain, E., Zorzi, M.: Queueing analysis for GBN and SR ARQ protocols under dynamic radio link adaptation with non-zero feedback delay. IEEE Trans. Wirel. Commun. 6(9), 3418–3428 (2007)

    Article  Google Scholar 

  15. Boucheron, S., Salamatian, M.: About priority encoding transmission. IEEE Trans. Inf. Theory 46(2), 699–705 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tsai, M., Chilamkurti, N., Zeadally, S., Vinel, A.: Concurrent multipath transmission combining forward error correction and path interleaving for video streaming in wireless networks. Comput. Commun. doi:10.1016/j.comcom.2010.02.001

  17. Tsai, M., Chilamkurti, N., Shieh, C., Vinel, A.: MAC-level forward error correction mechanism for minimum error recovery overhead and retransmission. Math. Comput. Model. doi:10.1016/j.mcm.2010.05.019

  18. Moid, A., Fapojuwo, A.: Heuristics for jointly optimizing FEC and ARQ for video streaming over IEEE 802.11 WLAN. IEEE Wireless Communications and Networking Conference, 2141–2146 (2008)

  19. Subramanian, V., Kalyanaraman, S., Ramakrishnan, K.: Hybrid packet FEC and retransmission-based erasure recovery mechanisms for lossy networks: analysis and design. IEEE Int. Conf. Commun. Syst. Softw. Middlew. 1–8 (2007)

  20. Kotuliakova, K., Polec, J.: Analysis of HARQ schemes using Reed-Solomon codes. IEEE Int. Conf. Syst. Signals Image Process. 323–326 (2008)

  21. Tan, G., Herfet, T.: On the architecture of erasure error recovery under strict delay constraints. IEEE Eur. Wirel. Conf. 1–7 (2008)

  22. Moon, S., Kim, J.: Network-adaptive selection of transport error control (NASTE) for video streaming over WLAN. IEEE Trans. Consumer Electron. 53(4), 1440–1448 (2007)

    Article  Google Scholar 

  23. Won, Y., Ahn, S.: GOP ARIMA: modeling the nonstationarity of VBR processes. Multimed. Syst. 10(5), 359–378 (2005)

    Article  Google Scholar 

  24. Krunz, M., Apostolopoulos, G.: Efficient support for interactive scanning operation in MPEG-based video-on-demand systems. Multimed. Syst. 8(1), 20–36 (2000)

    Article  Google Scholar 

  25. Shi, Y., Wu, C., Du, J.: A novel unequal loss protection approach for scalable video streaming over wireless networks. IEEE Trans. Consumer Electron. 53(2), 363–368 (2007)

    Article  Google Scholar 

  26. Qu, Q., Pei, Y., Modestino, J.: An adaptive motion-based unequal error protection approach for real-time video transport over wireless IP networks. IEEE Trans. Multimed. 8(5), 1033–1044 (2006)

    Article  Google Scholar 

  27. Gandikota, V., Tamma, B., Murthy, C.: Adaptive FEC-based packet loss resilience scheme for supporting voice communication over ad hoc wireless networks. IEEE Trans. Mobile Comput. 7(10), 1184–1199 (2008)

    Article  Google Scholar 

  28. Tsai, M., Huang, T., Shieh, C., Chu, K.: Dynamic combination of byte level and sub-packet level FEC in HARQ mechanism to reduce error recovery overhead on video streaming over wireless networks. Comput. Netw. doi:10.1016/j.comnet.2010.06.003

  29. Fitzek, F.: MPEG trace. http://trace.eas.asu.edu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Heng Ke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, MF., Huang, TC., Ke, CH. et al. Adaptive hybrid error correction model for video streaming over wireless networks. Multimedia Systems 17, 327–340 (2011). https://doi.org/10.1007/s00530-010-0213-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-010-0213-x

Keywords

Navigation