Abstract
Presenting and browsing image search results play key roles in helping users to find desired images from search results. Most existing commercial image search engines present them, dependent on a ranked list. However, such a scheme suffers from at least two drawbacks: inconvenience for consumers to get an overview of the whole result, and high computation cost to find desired images from the list. In this paper, we introduce a novel search result summarization approach and exploit this approach to further propose an interactive browsing scheme. The main contribution of this paper includes: (1) a dynamic absorbing random walk to find diversified representatives for image search result summarization; (2) a local scaled visual similarity evaluation scheme between two images through inspecting the relation between each image and other images; and (3) an interactive browsing scheme, based on a tree structure for organizing the images obtained from the summarization approach, to enable users to intuitively and conveniently browse the image search results. Quantitative experimental results and user study demonstrate the effectiveness of the proposed summarization and browsing approaches.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Cai, D., He, X., Li, Z., Ma, W.-Y., Wen, J.-R.: Hierarchical clustering of WWW image search results using visual, textual and link information. In: ACM multimedia, pp. 952–959 (2004)
Chang, C.-C., Lin, C.-J.: LIBSVM—a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (2009)
Fan, J., Gao, Y., Luo, H., Keim, D.A., Li, Z.: A novel approach to enable semantic and visual image summarization for exploratory image search. In: Multimedia information retrieval, pp. 358–365 (2008)
Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553–569 (1983)
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)
Gao, B., Liu, T.-Y., Qin, T., Zheng, X., Cheng, Q., Ma, W.-Y.: Web image clustering by consistent utilization of visual features and surrounding texts. In: ACM multimedia, pp. 112–121 (2005)
Jia, Y., Wang, J., Zhang, C., Hua, X.-S.: Finding image exemplars using fast sparse affinity propagation. In: ACM multimedia, pp. 639–642 (2008)
Jing, F., Wang, C., Yao, Y., Deng, K., Zhang, L., Ma, W.-Y. (2006) Igroup: web image search results clustering. In: ACM multimedia, pp. 377–384
Jing, Y., Rowley, H.A., Rosenberg, C., Wang, J., Covell, M.: Visualizing Web images via Google Image Swirl. In: NIPS workshop on statistical machine learning for visual analytics (2009)
Liu, H., Xie, X., Tang, X., Li, Z., Ma, W.-Y.: Effective browsing of web image search results. In: Multimedia information retrieval, pp. 84–90 (2004)
Mei, T., Hua, X.-S., Zhu, C.-Z., Zhou, H.-Q., Li, S.: Home video visual quality assessment with spatiotemporal factors. IEEE Trans. Circuits Syst. Video Technol. 17(6), 699–706 (2007)
Meilă, M.: Comparing clusterings—an information based distance. J. Multivar. Anal. 98(5), 873–895 (2007)
Moëllic, P.-A., Haugeard, J.-E., Pitel, G.: Image clustering based on a shared nearest neighbors approach for tagged collections. In: CIVR, pp. 269–278 (2008)
Song, K., Tian, Y., Gao, W., Huang, T.: Diversifying the image retrieval results. In: ACM multimedia, pp. 707–710 (2006)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 5500, 2319–2323 (2000)
van Leuken, R.H., Garcia, L., Olivares, X., van Zwol, R.: Visual diversification of image search results. In: WWW, pp. 341–350 (2009)
van Zwol, R., Murdock, V., Pueyo, L.G., Ramírez, G.: Diversifying image search with user generated content. In: Multimedia information retrieval, pp. 67–74 (2008)
Wang, J., Wang, F., Zhang, C., Shen, H.C., Quan, L.: Linear neighborhood propagation and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1600–1615 (2009)
Wang, J., Zhao, Y., Wu, X., Hua, X.-S.: Transductive multi-label learning for video concept detection. In: Multimedia information retrieval, pp. 298–304 (2008)
Wang, J., Zhao, Y., Wu, X., Hua, X.-S.: A transductive multi-label learning approach for video concept detection. Pattern Recogn., to appear (2010)
Wang, M., Hua, X.-S., Hong, R., Tang, J., Qi, G.-J., Song, Y.: Unified video annotation via multi-graph learning. IEEE Trans. Circuits Syst. Video Technol. 19(5), 733–746 (2009)
Wang, M., Hua, X.-S., Tang, J., Hong, R.: Beyond distance measurement: constructing neighborhood similarity for video annotation. IEEE Trans. Multimed. 11(3), 465–476 (2009)
Weinberger, K.Q., Slaney, M., van Zwol, R.: Resolving tag ambiguity. In: ACM multimedia, pp. 111–120 (2008)
Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS (2004)
Zhang, B., Li, H., Liu, Y., Ji, L., Xi, W., Fan, W., Chen, Z., Ma, W.-Y.: Improving web search results using affinity graph. In: SIGIR, pp. 504–511 (2005)
Zhu, X., Goldberg, A., Gael, J.V., Andrzejewski, D.: Improving diversity in ranking using absorbing random walks. In: Proceedings of the annual conference of the North American chapter of the association for computational linguistics (NAACL-HLT) (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, J., Jia, L. & Hua, XS. Interactive browsing via diversified visual summarization for image search results. Multimedia Systems 17, 379–391 (2011). https://doi.org/10.1007/s00530-010-0224-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-010-0224-7