Skip to main content
Log in

A framework for automatic creation of motion effects from theatrical motion pictures

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Motion effects are the most important physical effects of commercial feature films in the latest cinemas equipped with multi-sensory-effect systems known as 4DX theaters. This paper presents a framework for automatically generating motion effects from a video. We propose a seven-step motion-effect production pipeline based on the concept of structure from motion. In particular, we present the total-variation-based adaptive noise reduction method to remove acceleration noise and introduce methods to estimate the gravity direction from an image. The proposed framework is validated by prototype application to a synthetic video, a commercial feature film, a ride film, and three point-of-view (POV) footages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Heilig, M.L.: Sensorama simulator. US Patent 3,050,870 (1962)

  2. Heilig, M.L.: Experience theater. US Patent 3,469,837 (1969)

  3. Yamashita, A.: Theaters of illusion: the continuing evolution of entertainment simulation. ACM SIGGRAPH Comp. Graph. 28(2), 142–144 (1994)

    Article  Google Scholar 

  4. Hamed, H.M., Hema, R.A.: The application of the 4-D movie theater system in Egyptian museums for enhancing cultural tourism. J. Tour. 10(1), 37–53 (2009)

    Google Scholar 

  5. Hawkins, D.G.: Virtual reality and passive simulators: the future of fun. In: Biocca, F., Levy, M.R. (eds.) Communication in the age of virtual reality. Lawrence Erlbaum Associates, Hillsdale, New Jersey 07642, pp. 159–189 (1995)

  6. CJ 4DX. http://www.cj4dx.com/. Accessed 7 September 2012

  7. CJ CGV. http://www.cgvcinemas.com/. Accessed 7 September 2012

  8. Whitehead, G.: The technological art of simulation. SMPTE Motion Imaging J. 110(1), 39–42 (2001)

    Article  MathSciNet  Google Scholar 

  9. Waltl, M.: The next dimension of video experience: sensory effects. IEEE international symposium on a world of wireless, mobile and multimedia networks, Lucca, Italy, pp. 1–3, 20–23 June 2011

  10. Choi, B., Lee, E.S., Yoon, K.: Streaming media with sensory effect. International conference on information science and applications, Jeju, Korea, pp. 1–6 (2011)

  11. Yoo, B., Cha, M., Han, S.: A framework for a multi-sensory VR effect system with motional display. International conference on cyberworlds, Singapore, pp. 237–244 (2005)

  12. Lee, I., Han, S.: Estimating the 3D posture of 6DOF platform from image sequences. International symposium on advanced intelligent systems, Sokcho, Korea, pp. 894–897 (2007)

  13. Parent, R.: Computer animation: algorithms and techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2007)

    Google Scholar 

  14. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, New York (2003)

    Google Scholar 

  15. Kemeny, A., Panerai, F.: Evaluating perception in driving simulation experiments. Trends Cognit. Sci. 7(1), 31–37 (2003). doi:10.1016/s1364-6613(02)00011-6

    Article  Google Scholar 

  16. Nahon, M., Reid, L.: Simulator motion-drive algorithms: a designer’s perspective. J. Guid. Control Dyn. 13(2), 356–362 (1990)

    Article  Google Scholar 

  17. Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. Int. J. Comput. Vis. 59(3), 207–232 (2004)

    Article  Google Scholar 

  18. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25(3), 835–846 (2006)

    Article  Google Scholar 

  19. Thormahlen, T., Hasler, N., Wand, M., Seidel, HP.: Merging of feature tracks for camera motion estimation from video. European conference on visual media production, London, UK, pp. 1–8, 26–27 November 2008

  20. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. J. Field Robotics 23(1), 3–20 (2006)

    Article  MATH  Google Scholar 

  21. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  22. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. International symposium on mixed and augmented reality, Nara, Japan, pp. 225–234, 13–16 November 2007

  23. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Generic and real-time structure from motion using local bundle adjustment. Image Vis. Comput. 27(8), 1178–1193 (2009)

    Article  Google Scholar 

  24. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment—a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision algorithms: theory and practice, vol 1883. Lecture notes in computer science. Springer, Berlin, pp. 298–372. doi:10.1007/3-540-44480-7_21

  25. Boujou. http://www.vicon.com/boujou/. Accessed 7 September 2012

  26. SynthEyes Camera Tracker. http://www.ssontech.com/synovu.htm. Accessed 7 September 2012

  27. MatchMover. http://download.autodesk.com/us/maya/2013help-matchmover/. Accessed 7 September 2012

  28. Voodoo Camera Tracker. http://www.digilab.uni-hannover.de/docs/manual.html. Accessed 7 September 2012

  29. Ladin, Z., Flowers, W.C., Messner, W.: A quantitative comparison of a position measurement system and accelerometry. J. Biomech. 22(4), 295–308 (1989)

    Article  Google Scholar 

  30. Tilli, A., Montanari, M.: A low-noise estimator of angular speed and acceleration from shaft encoder measurement. AUTOMATIKA 42(3–4), 169–176 (2001)

    Google Scholar 

  31. Bélanger, P.R., Dobrovolny, P., Helmy, A., Zhang, X.: Estimation of angular velocity and acceleration from shaft-encoder measurements. Int. J. Robotics Res. 17(11), 1225–1233 (1998). doi:10.1177/027836499801701107

    Article  Google Scholar 

  32. Zhou, J., Shen, X., Petriu, EM., Georganas, N.D.: Linear velocity and acceleration estimation of 3 DOF haptic interfaces. IEEE international workshop on haptic audio visual environments and games, Ottawa, ON, Canada, pp. 137–142, 18–19 October 2008

  33. Brown, R.H., Schneider, S.C., Mulligan, M.G.: Analysis of algorithms for velocity estimation from discrete position versus time data. IEEE Trans. Ind. Electron. 39(1), 11–19 (1992)

    Article  Google Scholar 

  34. Leifer, J., Weems, B., Kienle, S., Sims, A.: Three-dimensional acceleration measurement using videogrammetry tracking data. Exp. Mech. 51(2), 199–217 (2011)

    Article  Google Scholar 

  35. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964). doi:10.1021/ac60214a047

    Article  Google Scholar 

  36. Bos, J.E., MacKinnon, S.N., Patterson, A.: Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view. Aviat. Space Environ. Med 76(12), 1111–1118 (2005)

    Google Scholar 

  37. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys D Nonlinear Phenom. 60(1–4), 259–268 (1992). doi:10.1016/0167-2789(92)90242-f

    Article  MATH  Google Scholar 

  38. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  39. Cinemetrics. http://www.cinemetrics.lv/. Accessed 5 February 2013

  40. California Screamin’ Roller Coaster Front Seat POV. http://youtu.be/08VwtYdoBhM?t=1m30s. Accessed 5 February 2013

  41. Downhill mountain biking helmet cam POV Winter Park Colorado. http://youtu.be/HAzWivQ6v7I?t=2m50s. Accessed 5 February 2013

  42. GoPro: Horse Show Jumping. http://youtu.be/7ZzWccM_5cM?t=10s. Accessed 5 February 2013

  43. Night Landing in Los Angeles (cockpit view). http://youtu.be/OpA3ORYlgGs?t=50s. Accessed 5 February 2013

  44. Oh, H.: 4D—The future of cinema (in Korean). The Chosunilbo. http://news.chosun.com/site/data/html_dir/2011/06/29/2011062902540.html. Accessed 5 February 2013

Download references

Acknowledgment

This work was supported in part by Agency for Defense Development under the contract UD110039DD, Korea and the Korea Institute of Science and Technology (KIST) Institutional Program (Project No. 2E24100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byounghyun Yoo.

Additional information

Communicated by B. Prabhakaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, S., Yoo, B. & Han, S. A framework for automatic creation of motion effects from theatrical motion pictures. Multimedia Systems 20, 327–346 (2014). https://doi.org/10.1007/s00530-013-0322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-013-0322-4

Keywords

Navigation