Skip to main content
Log in

User-centric incremental learning model of dynamic personal identification for mobile devices

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

This study presents a user-centric incremental learning model based on the proposed output selection strategy (OSS) and multiview body direction estimation for dynamic personal identification systems on mobile devices. First, the OSS filters primitive results generated from the classifier, so that the refined information can be used to update the learning model. Second, the robustness of the model is enhanced by using different views of faces as system input, which allows the learning model to adapt itself when either of facial views is not available. In addition, the body direction estimation method is proposed for estimating multiple views of a person by matching templates of human shapes and skin colors. An experiment on 168,000 test samples (20 classes with three facial views) is conducted to evaluate the proposed system. The experimental results show that the proposed method improves accuracy by more than 40 % compared to baseline, and correspondingly confirms the effectiveness of the proposed idea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  2. Turk, M.: A random walk through Eigenspace. IEICE Trans. Inform. Syst. E84d(12), 1586–1595 (2001)

    Google Scholar 

  3. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  4. Wu, J.Y., An, G.Y., Ruan, Q.Q.: Independent Gabor analysis of discriminant features fusion for face recognition. IEEE Signal Process. Lett. 16(1–3), 97–100 (2009)

    Article  Google Scholar 

  5. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. Proc. IEEE 83(5), 705–741 (1995)

    Article  Google Scholar 

  6. Valenzano, D.R., Mennucci, A., Tartarelli, G., et al.: Shape analysis of female facial attractiveness. Vision Res. 46(8–9), 1282–1291 (2006)

    Article  Google Scholar 

  7. Lina, Takahashi, T., Ide, I., et al.: Incremental unsupervised-learning of appearance manifold with view-dependent covariance matrix for face recognition from video sequences. IEICE Trans. Inform. Syst. E92D(4), 642–652 (2009)

    Google Scholar 

  8. Lina, S., Takahashi, T., Ide, I., et al.: Construction of appearance manifold with embedded view-dependent covariance matrix for 3D object recognition. IEICE Trans. Inform. Syst. E91D(4), 1091–1100 (2008)

    Article  Google Scholar 

  9. Borenstein, E., Ullman, S.: Combined top-down/bottom-up segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2109–2125 (2008)

    Article  Google Scholar 

  10. Chen, X., Yang, Q., Liao H., et al.: Real-time face pose estimation in video sequence, 2nd International Workshop on Education Technology and Computer Science, ETCS 2010. pp. 24–27 (2010)

  11. Choi, Y.H., Tak, Y.S., Rho, S., et al.: Skin feature extraction and processing model for statistical skin age estimation. Multimed. Tools Appl. 64(2), 227–247 (2013)

    Article  Google Scholar 

  12. Kidera, T., Ozawa, S., Abe, S.: An incremental learning algorithm of ensemble classifier systems, IEEE International Conference on Neural Networks—Conference Proceedings. pp. 3421–3427 (2006)

  13. Ozawa, S., Toh, S.L., Abe, S., et al.: Incremental learning of feature space and classifier for face recognition. Neural Networks 18(5–6), 575–584 (2005)

    Article  Google Scholar 

  14. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228–233 (2001)

    Article  Google Scholar 

  15. Swets, D.L., Weng, J.J.: Using discriminant Eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 831–836 (1996)

    Article  Google Scholar 

  16. Kirby, M., Sirovich, L.: Application of the karhunen–loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 103–108 (1990)

    Article  Google Scholar 

  17. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 696–710 (1997)

    Article  Google Scholar 

  18. Jeong, D.H., Ziemkiewicz, C., Fisher, B., et al.: IPCA: an interactive system for PAC-based visual analytics. Comput. Graphics Forum 28(3), 767–774 (2009)

    Article  Google Scholar 

  19. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Future Gener. Comput. Syst. 29(1), 84–106 (2013)

    Article  Google Scholar 

  20. Paul Viola, M.J.: Robust real-time object detection, 2nd International Workshop on Statistical and Computational Theories of Vision—Modeling, Learning, Computing, and Sampling (2001)

  21. Paul, A., Jiang, Y.C., Wang J.F., et al.: Parallel reconfigurable computing-based mapping algorithm for motion estimation in advanced video coding. ACM Trans. Embed. Comput. Syst. 11, 40(1–18) (2012)

  22. Paul, A., Wu, J., Yang, J.F., et al.: Gradient-based edge detection for motion estimation in h.264/avc. IET Image Proc. 5(4), 323–327 (2011)

    Article  Google Scholar 

  23. Tsai, A.C., Paul, A., Wang, J.C., et al.: Intensity gradient technique for efficient intra-prediction in h.264/avc. IEEE Trans. Circuits Syst. Video Technol. 18(5), 694–698 (2008)

    Article  Google Scholar 

  24. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction, Proceedings—International Conference on Pattern Recognition. pp. 28–31 (2004)

  25. Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

  26. Kim, K., Chalidabhongse, T.H., Harwood, D., et al.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)

    Article  Google Scholar 

  27. Garcia, C., Tziritas, G.: Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans. Multimed. 1(3), 264–277 (1999)

    Article  Google Scholar 

  28. Rastislav Lukac K.N.P.: Color image processing methods and applications, 1st edn. CRC Press, Boca Raton (2006)

  29. Qiong, L., Guang-zheng, P.: A robust skin color based face detection algorithm, pp. 525–528 (2010)

  30. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Chun Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, HC., Chen, BW., Bharanitharan, K. et al. User-centric incremental learning model of dynamic personal identification for mobile devices. Multimedia Systems 21, 121–130 (2015). https://doi.org/10.1007/s00530-013-0328-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-013-0328-y

Keywords

Navigation