Skip to main content
Log in

Reconstruction of multi-view compressed imaging using weighted total variation

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

This paper concentrates on the problem of image reconstruction from compressed sensing (CS) measurements in multi-view compressed imaging systems, where each view is acquired independently by CS technique. In order to take advantage of both the inter-view correlation and the spatial prior information in multi-view image sets, a weighted total variation (TV) regularized model, which combines the TV norm of a target view and the TV norm of the corresponding residual, is proposed. To efficiently solve the weighted TV regularization constrained problem, novel algorithms are presented for both the anisotropy TV and the isotropy TV cases. Given the multi-view CS measurements, a sliding window-based recovery framework is also developed to work with the weighted TV-based reconstruction algorithms and produce high-quality results. We show by experiments that the proposed methods greatly outperform the straight forward reconstruction which applies view by view image reconstruction independently, and also have significant advantages over other benchmark methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://vision.middlebury.edu/stereo/data.

  2. http://research.microsoft.com/en-us/um/people/sbkang/3dvideodownload/.

  3. http://www.caam.rice.edu/~optimization/L1/TVAL3/.

  4. http://people.csail.mit.edu/celiu/OpticalFlow/.

  5. http://users.ece.gatech.edu/~sasif/dynamicMRI/.

References

  1. Asif, M., Hamilton, L., Brummer, M., Romberg, J.: Motion-adaptive spatio-temporal regularization (master) for accelerated dynamic MRI. Magn. Reson. Med. 70(3), 800–812 (2013)

    Article  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmonic Anal. 27(3), 265–274 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  6. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  7. Chang, K., Qin, T., Xu, W., Men, A.: A joint reconstruction algorithm for multi-view compressed imaging. In: International Symposium on Circuits and Systems (ISCAS), Beijing, China, pp. 221–224. IEEE (2013)

  8. Chen, X., Frossard, P.: Joint reconstruction of compressed multi-view images. In: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, pp. 1005–1008. IEEE (2009)

  9. Dai, Q., Fu, C., Ji, X., Zhang, Y.: Robust joint reconstruction in compressed multi-view imaging. In: Picture Coding Symposium (PCS), Krakw, Poland, pp. 13–16. IEEE (2012)

  10. Dong, W., Shi, G., Li, X., Zhang, L., Wu, X.: Image reconstruction with locally adaptive sparsity and nonlocal robust regularization. Signal Process. Image Commun. 27, 1109–1122 (2012)

    Article  Google Scholar 

  11. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Do, T.T., Chen, Y., Nguyen, D.T., Nguyen, N., Gan, L., Tran, T.D.: Distributed compressed video sensing. In: International Conference on Image Processing (ICIP), Cario, Egypt, pp. 1393–1396. IEEE (2009)

  13. Do, T.T., Nguyen, N.H., Gan, L., Tran, T.D.: Fast and efficient compressive sensing using structurally random matrices. IEEE Trans. Signal Process. 60(1), 139–154 (2012)

    Article  MathSciNet  Google Scholar 

  14. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  15. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  16. Goldstein, T., Osher, S.: The split Bregman method for l1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kang, L., Lu, C.: Distributed compressive video sensing. In: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, pp. 1169–1172. IEEE (2009)

  18. Liu, C.: Beyond pixels: exploring new representations and applications for motion analysis. PhD thesis, Massachusetts Institute of Technology (2009)

  19. Liu, Y., Li, M., Dimitris, A.P.: Motion-aware decoding of compressed-sensed video. IEEE Trans. Circuits Syst. Video Technol. 23(3), 438–444 (2013)

    Article  Google Scholar 

  20. Li, C., Jiang, H., Paul, W., Zhang, Y.: A new compressive video sensing framework for mobile broadcast. IEEE Trans. Broadcast. 59(1), 197–205 (2013)

    Article  Google Scholar 

  21. Li, C.: An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing. Master’s thesis, Rice University (2009)

  22. Li, X., Wei, Z., Xiao, L.: Compressed sensing joint reconstruction for multi-view images. Electron. Lett. 46(23), 1548–1550 (2010)

    Article  Google Scholar 

  23. Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  24. Ma, J., Plonka, G., Hussaini, M.Y.: Compressive video sampling with approximate message passing decoding. IEEE Trans. Circuits Syst. Video Technol. 22(9), 1354–1364 (2012)

    Article  Google Scholar 

  25. Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed MR imaging using total variation and wavelets. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, USA, pp. 1–8. IEEE (2008)

  26. Mun, S., Fowler, J.E.: Residual reconstruction for block-based compressed sensing of video. In: Data Compression Conference (DCC), Snowbird, Utah, USA, pp. 183–192. IEEE (2011)

  27. Park, J., Wakin, M.B.: A geometric approach to multi-view compressive imaging. EURASIP J. Adv. Signal Process. 37 (2012)

  28. Romberg, J.: Imaging via compressive sampling. IEEE Signal Process Mag. 25(2), 14–20 (2008)

    Article  Google Scholar 

  29. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom. 60(1), 259–268 (1992)

    Article  MATH  Google Scholar 

  30. Sonneveld, P.: CGS: A fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10(1), 36–52 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Thirumalai, V., Frossard, P.: Correlation estimation from compressed images. J. Vis. Commun. Image Represent. 24(6), 649–660 (2013)

    Article  Google Scholar 

  32. Tikhonov, A.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 4, 1035–1038 (1963)

    Google Scholar 

  33. Trocan, M., Maugey, T., Tramel, E.W., Fowler, J.E., Pesquet-Popescu, B.: Compressed sensing of multiview images using disparity compensation. In: International Conference on Image Processing (ICIP), Hong Kong, China, pp. 3345–3348. IEEE (2010)

  34. Trocan, M., Maugey, T., Tramel, E.W., Fowler, J.E., Pesquet-Popescu, B.: Disparity-compensated compressed-sensing reconstruction for multiview images. In: International conference on multimedia and expo (ICME), Singapore, pp. 1225–1229. IEEE (2010)

  35. Trocan, M., Maugey, T., Tramel, E.W., Fowler, J.E., Pesquet-Popescu, B.: Multistage compressed-sensing reconstruction of multiview images. In: Workshop on Multimedia Signal Processing (MMSP), Saint-Malo, France, pp. 111–115. IEEE (2010)

  36. Trocan, M., Tramel, E.W., Fowler, J.E., Pesquet-Popescu, B.: Compressed-sensing recovery of multiview image and video sequences using signal prediction. Multimed. Tools Appl. In press

  37. Wakin, M.B., Laska, J.N., Duarte, M.F., Baron, D., Sarvotham, S., Takhar, D., Kelly, K.F., Baraniuk, R.G.: Compressive imaging for video representation and coding. In: Picture Coding Symposium (PCS), Beijing, China. IEEE (2006)

  38. Wang, Y., Yin, W., Zhang, Y.: A fast algorithm for image deblurring with total variation regularization. Technical report, CAAM Technical Reports (2007)

  39. Wang, Z.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  40. Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation. IEEE Transact. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  41. Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data. IEEE J. Selected Topics Signal Process. 4(2), 288–297 (2010)

    Article  Google Scholar 

  42. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 142–168 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. James E. Fowler and Dr. Eric W. Tramel from Mississippi State University for helping implement DC-TV algorithm, thank Dr. Chengbo Li from Rice University for providing detailed information about TVAL3 algorithm and sharing his code, thank Dr. Salman Asif from Georgia Institute of Technology for making his MASTeR code available online, thank Dr. Ce Liu from Massachusetts Institute of Technology for sharing his optical-flow code, and thank anonymous reviewers for giving valuable suggestions to improve the quality of this manuscript. This work was supported by the Natural Science Foundation of China (61261023, 61302084), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (2011GXNSFD018024, 2013GXNSFBA019272), and the research project of Department of Education of Guangxi Zhuang Autonomous Region (201203YB001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Chang.

Additional information

Communicated by C. Xu.

Appendix

Appendix

1.1 A Derivation of RA-WATV

Given the weighted anisotropic TV model (13), we first introduce a new variable E i  = u i  − p i and yield

$$\begin{aligned} (\hat{{\bf u}}_{i},\hat{{\bf E}}_{i})&= \mathop{\hbox{argmin}}\limits_{{\bf u}_i,{\bf E}_{i}} \|\nabla_x{\bf u}_i\|_1+\|\nabla_y{\bf u}_i\|_1+ \beta(\|\nabla_x{\bf E}_i\|_1+\|\nabla_y{\bf E}_i\|_1)\\ &\quad \hbox{s.t.} \quad {\bf y}_i=\boldsymbol{\Upphi}_i{\bf u}_i, \quad {\bf E}_i={\bf u}_i-{\bf p}_{i} \end{aligned}$$
(A1)

Then the model (A1) can be approximated by the following model

$$\begin{aligned} (\hat{{\bf u}}_i,\hat{{\bf E}}_i)&= \mathop{\hbox{argmin}}\limits_{{\bf u}_i,{\bf E}_i} \|\nabla_x{\bf u}_i\|_1+\|\nabla_y{\bf u}_i\|_1+ \beta(\|\nabla_x{\bf E}_i\|_1+\|\nabla_y{\bf E}_i\|_1)\\ &\quad+\frac{\lambda}{2}(\|{\bf y}_i-\boldsymbol{\Upphi}_i{\bf u}_i\|^2_2+\mu\|{\bf E}_i-({\bf u}_i-{\bf p}_i)\|^2_2) \end{aligned}$$
(A2)

where μ is used to tradeoff between two kinds of approximation error, and λ is used to tradeoff between regularizing functional and approximation error. We introduce (A2) because it is numerically easier to minimize. It is well known that the solution of (A2) converges to that of (A1) as \(\lambda\rightarrow\infty\).

After that, we apply the split Bregman method [16] to help solve the problem (A2). Replace \(\nabla_{x}{\bf u}_i\) by \({\bf d}_{1x}, \nabla_y{\bf u}_i\) by \({\bf d}_{1y}, \nabla_x{\bf E}_i\) by \({\bf d}_{2x}, \nabla_y{\bf E}_i\) by d 2y , and problem (A2) becomes a new constrained problem

$$\begin{aligned} &(\hat{{\bf u}}_i,\hat{{\bf E}}_i,\hat{{\bf d}}_{1x},\hat{{\bf d}}_{1y},\hat{{\bf d}}_{2x},\hat{{\bf d}}_{2y})\\ &\quad=\mathop{\hbox{argmin}}\limits_{{\bf u}_i,{\bf E}_i,{\bf d}_{1x},{\bf d}_{1y},{\bf d}_{2x},{\bf d}_{2y}} \|{\bf d}_{1x}\|_1+\|{\bf d}_{1y}\|_1+\beta(\|{\bf d}_{2x}\|_1+\|{\bf d}_{2y}\|_1)\\ & \qquad +\frac{\lambda}{2}(\|{\bf y}_i-\boldsymbol{\Upphi}_i{\bf u}_i\|^2_2+\mu\|{\bf E}_i-({\bf u}_i-{\bf p}_i)\|^2_2)\\ &\quad \hbox{s.t.}\quad {\bf d}_{1x}=\nabla_x{\bf u}_i,{\bf d}_{1y}=\nabla_y{\bf u}_i, {\bf d}_{2x}=\nabla_x{\bf E}_i,{\bf d}_{2y}=\nabla_y{\bf E}_i \end{aligned}$$
(A3)

Similarly, penalty function terms are added to form the unconstrained problem below

$$\begin{aligned} &(\hat{{\bf u}}_i,\hat{{\bf E}}_i,\hat{{\bf d}}_{1x},\hat{{\bf d}}_{1y},\hat{{\bf d}}_{2x},\hat{{\bf d}}_{2y})\\ &\quad=\mathop{\hbox{argmin}}\limits_{{\bf u}_i,{\bf E}_i,{\bf d}_{1x},{\bf d}_{1y},{\bf d}_{2x},{\bf d}_{2y}} \|{\bf d}_{1x}\|_1+\|{\bf d}_{1y}\|_1+\beta(\|{\bf d}_{2x}\|_1+\|{\bf d}_{2y}\|_1)\\ & \qquad+\frac{\lambda}{2}(\|{\bf y}_i-{\boldsymbol{\Upphi}}_i{\bf u}_i\|^2_2 +\mu\|{\bf E}_i-({\bf u}_i-{\bf p}_i)\|^2_2)\\ &\qquad+\frac{\gamma}{2}(\|{\bf d}_{1x}-\nabla_x{\bf u}_i\|^2_2+\|{\bf d}_{1y}-\nabla_y{\bf u}_i\|^2_2)\\ & \qquad+\frac{\gamma}{2}\alpha(\|{\bf d}_{2x}-\nabla_x{\bf E}_i\|^2_2+\|{\bf d}_{2y}-\nabla_y{\bf E}_i\|^2_2) \end{aligned}$$
(A4)

where γ and α are tradeoff parameters, which need to be tuned suitably. Finally, strictly enforce the constraints by applying the Bregman iteration [42] to get the solution for the (k + 1)th iteration

$$\begin{aligned} &({\bf u}^{k+1}_i,{\bf E}^{k+1}_i,{\bf d}^{k+1}_{1x},{\bf d}^{k+1}_{1y},{\bf d}^{k+1}_{2x},{\bf d}^{k+1}_{2y})\\ &\quad=\mathop{\hbox{argmin}}\limits_{{\bf u}_i,{\bf E}_i,{\bf d}_{1x},{\bf d}_{1y},{\bf d}_{2x},{\bf d}_{2y}} \|{\bf d}_{1x}\|_1+\|{\bf d}_{1y}\|_1+\beta(\|{\bf d}_{2x}\|_1+\|{\bf d}_{2y}\|_1)\\ &\qquad+\frac{\lambda}{2}(\|{\bf y}_i-\boldsymbol{\Upphi}_i{\bf u}_i\|^2_2+\mu\|{\bf E}_i-({\bf u}_i-{\bf p}_i)\|^2_2)\\ &\qquad+\frac{\gamma}{2}(\|{\bf d}_{1x}-\nabla_x{\bf u}_i-{\bf b}^k_{1x}\|^2_2+\|{\bf d}_{1y}-\nabla_y{\bf u}_i-{\bf b}^k_{1y}\|^2_2)\\ &\qquad+\frac{\gamma}{2}\alpha(\|{\bf d}_{2x}-\nabla_x{\bf E}_i-{\bf b}^k_{2x}\|^2_2+\|{\bf d}_{2y}-\nabla_y{\bf E}_i-{\bf b}^k_{2y}\|^2_2) \end{aligned}$$
(A5)

where the values of b k1x b k1y b k2x and b k2y are chosen through Bregman iteration method. Since the variables in the minimization problem (A5) decouple from each other, the target problem can be separated into many sub-problems, two of which are listed below

$$\begin{aligned} {\bf u}^{k+1}_i &=\mathop{\hbox{argmin}}\limits_{{\bf u}_i} \frac{\lambda}{2}(\|{\bf y}_i-{\boldsymbol{\Upphi}}_i{\bf u}_i\|^2_2+\mu\|{\bf E}^k_i-({\bf u}_i-{\bf p}_i)\|^2_2)\\ &+\frac{\gamma}{2}(\|{\bf d}^k_{1x}-\nabla_x{\bf u}_i-{\bf b}^k_{1x}\|^2_2 +\|{\bf d}^k_{1y}-\nabla_y{\bf u}_i-{\bf b}^k_{1y}\|^2_2) \end{aligned}$$
(A6)
$$\begin{aligned} {\bf E}^{k+1}_i&=\mathop{\hbox{argmin}}\limits_{{\bf E}_i} \frac{\lambda}{2}(\mu\|{\bf E}_i-({\bf u}^{k+1}_i-{\bf p}_i)\|^2_2)\\ &+\frac{\gamma}{2}\alpha(\|{\bf d}^k_{2x}-\nabla_x{\bf E}_i-{\bf b}^k_{2x}\|^2_2 +\|{\bf d}^k_{2y}-\nabla_y{\bf E}_i-{\bf b}^k_{2y}\|^2_2) \end{aligned}$$
(A7)

Note that after sub-problem (A6) is solved, the updated u k+1 i can be used in sub-problem (A7). Since object functions of (A6) and (A7) are quadratic, we can find their optimality conditions (15) and (16), respectively. Using CGS method [30], we can easily get updating solution for u k+1 and E k+1.

For the remaining sub-problem

$$\begin{aligned} &({\bf d}^{k+1}_{1x},{\bf d}^{k+1}_{1y},{\bf d}^{k+1}_{2x},{\bf d}^{k+1}_{2y})\\ &\quad=\mathop{\hbox{argmin}}\limits_{{\bf d}_{1x},{\bf d}_{1y},{\bf d}_{2x},{\bf d}_{2y}} \|{\bf d}_{1x}\|_1+\|{\bf d}_{1y}\|_1+\beta(\|{\bf d}_{2x}\|_1+\|{\bf d}_{2y}\|_1)\\ &\qquad+\frac{\gamma}{2}(\|{\bf d}_{1x}-\nabla_x{\bf u}^{k+1}_i-{\bf b}^k_{1x}\|^2_2 +\|{\bf d}_{1y}-\nabla_y{\bf u}^{k+1}_i-{\bf b}^k_{1y}\|^2_2)\\ &\qquad+\frac{\gamma}{2}\alpha(\|{\bf d}_{2x}-\nabla_x{\bf E}^{k+1}_i-{\bf b}^k_{2x}\|^2_2 +\|{\bf d}_{2y}-\nabla_y{\bf E}^{k+1}_i-{\bf b}^k_{2y}\|^2_2) \end{aligned}$$
(A8)

It can be divided into 4 typical l 2-l 1 sub-problems with respect to d 1x d 1y d 2x and d 2y , each of which can be solved by shrinkage operation explained in Sect. 3.3.

1.2 B Derivation of RA-WITV

For the weighted isotropic TV model (14), similarly, it is converted to

$$\begin{aligned} &({\bf u}^{k+1}_i,{\bf E}^{k+1}_i,{\bf d}^{k+1}_{1x},{\bf d}^{k+1}_{1y},{\bf d}^{k+1}_{2x},{\bf d}^{k+1}_{2y})\\ &\quad=\mathop{\hbox{argmin}}\limits_{{\bf u}_i,{\bf E}_i,{\bf d}_{1x},{\bf d}_{1y},{\bf d}_{2x},{\bf d}_{2y}} \|({\bf d}_{1x},{\bf d}_{1y})\|_2+\beta(\|({\bf d}_{2x},{\bf d}_{2y})\|_2)\\ &\qquad+\frac{\lambda}{2}(\|{\bf y}_i-{\boldsymbol{\Upphi}}_i{\bf u}_i\|^2_2+\mu\|{\bf E}_i-({\bf u}_i-{\bf p}_i)\|^2_2)\\ &\qquad+\frac{\gamma}{2}(\|{\bf d}_{1x}-\nabla_x{\bf u}_i-{\bf b}^k_{1x}\|^2_2+\|{\bf d}_{1y} -\nabla_y{\bf u}_i-{\bf b}^k_{1y}\|^2_2)\\ &\qquad+\frac{\gamma}{2}\alpha(\|{\bf d}_{2x}-\nabla_x{\bf E}_i-{\bf b}^k_{2x}\|^2_2+\|{\bf d}_{2y} -\nabla_y{\bf E}_i-{\bf b}^k_{2y}\|^2_2) \end{aligned}$$
(B1)

where \(\|({\bf d}_{x},{\bf d}_{y})\|_2=\sum_{j}{\sqrt{d^2_{x,j}+d^2_{y,j}}}; d_{x,j}\) and d y,j stand for the jth element in vector d x and d y , respectively.

Problem (B1) is also expected to be divided into many disconnected sub-problems and solved iteratively. Obviously, sub-problems for updating u k+1 i and E k+1 i still have the same forms as (A6) and (A7). However, the d 1x and d 1y variables do not decouple as they did in the anisotropic case, and neither are the d 2x and d 2y variables. In order to apply the iterative minimization procedure to this problem, we must solve the following sub-problem instead of problem (A8)

$$\begin{aligned} &({\bf d}^{k+1}_{1x},{\bf d}^{k+1}_{1y},{\bf d}^{k+1}_{2x},{\bf d}^{k+1}_{2y})\\ &\quad=\mathop{\hbox{argmin}}\limits_{{\bf d}_{1x},{\bf d}_{1y},{\bf d}_{2x},{\bf d}_{2y}} \|({\bf d}_{1x},{\bf d}_{1y})\|_2+\beta(\|({\bf d}_{2x},{\bf d}_{2y})\|_2)\\ &\qquad+\frac{\gamma}{2}(\|{\bf d}_{1x}-\nabla_x{\bf u}^{k+1}_i-{\bf b}^k_{1x}\|^2_2 +\|{\bf d}_{1y}-\nabla_y{\bf u}^{k+1}_i-{\bf b}^k_{1y}\|^2_2)\\ &\qquad+\frac{\gamma}{2}\alpha(\|{\bf d}_{2x}-\nabla_x{\bf E}^{k+1}_i -{\bf b}^k_{2x}\|^2_2+\|{\bf d}_{2y}-\nabla_y{\bf E}^{k+1}_i-{\bf b}^k_{2y}\|^2_2) \end{aligned}$$
(B2)

Despite we cannot treat the d 1x d 1y d 2x d 2y variables as we did in the anisotropic case, we are still able to explicitly solve the minimization problem for updating these variables using a generalized shrinkage formula [38]. Thus, different from step 2 of Algorithm 1, for RA-WITV, the jth element in d k1x d k+11y d k+12x d k+12y should be updated by

$$\begin{aligned} ({\bf d}^{k+1}_{1x})_j&=\max(({\bf s}^k_1)_j-1/\gamma,0)\cdot\frac{(\nabla_x{\bf u}^{k+1}_i)_j +({\bf b}^k_{1x})_j}{({\bf s}^k_1)_j}\\ ({\bf d}^{k+1}_{1y})_j&=\max(({\bf s}^k_1)_j-1/\gamma,0)\cdot\frac{(\nabla_y{\bf u}^{k+1}_i)_j +({\bf b}^k_{1y})_j}{({\bf s}^k_1)_j}\\ ({\bf d}^{k+1}_{2x})_j&=\max(({\bf s}^k_2)_j-\beta/(\alpha\gamma),0)\cdot\frac{(\nabla_x{\bf E}^{k+1}_i)_j+({\bf b}^k_{2x})_j}{({\bf s}^k_2)_j}\\ ({\bf d}^{k+1}_{2y})_j&=\max(({\bf s}^k_2)_j-\beta/(\alpha\gamma),0)\cdot\frac{(\nabla_y{\bf E}^{k+1}_i)_j+({\bf b}^k_{2y})_j}{({\bf s}^k_2)_j} \end{aligned}$$
(B3)

where

$$\begin{aligned} ({\bf s}^k_1)_j&=\sqrt{((\nabla_x{\bf u}^{k+1}_i)_j+({\bf b}^k_{1x})_j)^2+((\nabla_y{\bf u}^{k+1}_i)_j+({\bf b}^k_{1y})_j)^2}\\ ({\bf s}^k_2)_j&=\sqrt{((\nabla_x{\bf E}^{k+1}_i)_j+({\bf b}^k_{2x})_j)^2+((\nabla_y{\bf E}^{k+1}_i)_j+({\bf b}^k_{2y})_j)^2} \end{aligned}$$
(B4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, K., Qin, T., Xu, W. et al. Reconstruction of multi-view compressed imaging using weighted total variation. Multimedia Systems 20, 363–378 (2014). https://doi.org/10.1007/s00530-014-0354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-014-0354-4

Keywords

Navigation