Abstract
With the pervasiveness of online social media and rapid growth of web data, a large amount of multi-media data is available online. However, how to organize them for facilitating users’ experience and government supervision remains a problem yet to be seriously investigated. Topic detection and tracking, which has been a hot research topic for decades, could cluster web videos into different topics according to their semantic content. However, how to online discover topic and track them from web videos and images has not been fully discussed. In this paper, we formulate topic detection and tracking as an online tracking, detection and learning problem. First, by learning from historical data including labeled data and plenty of unlabeled data using semi-supervised multi-class multi-feature method, we obtain a topic tracker which could also discover novel topics from the new stream data. Second, when new data arrives, an online updating method is developed to make topic tracker adaptable to the evolution of the stream data. We conduct experiments on public dataset to evaluate the performance of the proposed method and the results demonstrate its effectiveness for topic detection and tracking.





Similar content being viewed by others
References
Xie, L., Natsev, A., Kender, J.R., Hill, M., Smith, J.R.: Visual memes in social media: tracking real-world news in youtube videos. In: Proceedings of the 19th ACM International Conference on Multimedia, MM ’11, pp. 53–62 (2011)
Allan, J., Carbonell, J., Doddington, G., Yamron, J., Yang, Y.: Topic detection and tracking pilot study final report (1998)
Chen, K., Luesukprasert, L., Chou, S.: Hot topic extraction based on timeline analysis and multi-dimensional sentence modeling. IEEE Trans. Knowl. Data Eng. 19(8), 1016–1025 (2007)
Sun, A.X., Hu, M.: Query-guided event detection from news and blog streams. IEEE Trans. Syst. Man Cybern. 41(5), 834–839 (2011)
Zhai, Y., Shah, M.: Tracking news stories across different sources. In: Proceedings of the 20th ACM International Conference on Multimedia, MM ’05, pp. 2–10. ACM (2005)
Wu, Z.L., Li, C.h.: Topic detection in online discussion using non-negative matrix factorization. In: Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Workshops, WI-IATW ’07, pp. 272–275 (2007)
Kasiviswanathan, S.P., Melville, P., Banerjee, A., Sindhwani, V.: Emerging topic detection using dictionary learning. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM ’11, pp. 745–754. ACM (2011)
Aiello, L.M., Petkos, G., Corney, D., Papadopoulos, S., Skraba, R., Goker, A., Kompatsiaris, Y., Jaimes, A.: Sensing trending topics in twitter. IEEE Trans. Multimed. 33(4), 410–419 (2013)
Kim, D., Kim, D., Hwang, E., Rho, S.: Twittertrends: a spatio-temporal trend detection and related keywords recommendation scheme. Multimed. Syst. 1–14 (2013)
Yeh, Y.R., Chung, Y.Y., Wang, Y.F.: A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection. IEEE Trans. Multimed. 14(3), 563–574 (2012)
Li, H.J., Wang, X.H., Tang, J.H., Zhao, C.X.: Combining global and local matching of multiple features fro precise item image retrieval. Multimed. Syst. 19, 37–49 (2013)
Ma, Z.G., Yang, Y., Xu, Z.W., Yan, S.C., Sebe, N., Hauptmann, A.G.: Complex event detection via multi-source video attributes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2013)
Xu, Z.W., Yang, Y., Tsang, I., Sebe, N., Hauptmann, A.G.: Feature weighting via optimal thresholding for video analysis. In: Proceedings of Intenational Conference on Computer Vision, ICCV (2013)
Bao, B.K., Min, W., Sang, J., Xu, C.: Multimedia news digger on emerging topics from social streams. In: Proceedings of the 20th ACM International Conference on Multimedia, MM ’12, pp. 1357–1358 (2012)
Liu, K., Xu, J., Zhang, L., Ding, Z., Li, M.: Discovering hot topics from geo-tagged video. Neurocomputing 105, 90–99 (2013)
Shao, J., Ma, S., Lu, W., Zhuang, Y.: A unified framework for web video topic discovery and visualization. Pattern Recognit. Lett. 33(4), 410–419 (2012)
Hong, R., Tang, J., Tan, H., Ngo, C., Yan, S., Chua, T.: Beyond search: event driven summarization for web videos. ACM Trans. Multimed. Comput. Commun. Appl. 33(4), 410–419 (2011)
Cao, J., Ngo, C.W., Zhang, Y.D., Li, J.T.: Tracking web video topics: discovery, visualization, and monitoring. IEEE Trans. Circuits Syst. Video Technol. 21(12), 1835–1846 (2011)
Chen, T., Liu, C., Huang, Q.: An effective multi-clue fusion approach for web video topic detection. In: Proceedings of the 20th ACM International Conference on Multimedia, MM ’12, pp. 781–784 (2012)
Yang, Y., Song, J., Huang, Z., Ma, Z., Sebe, N., Hauptmann, A.: Multi-feature fusion via hierarchical regression for multimedia analysis. IEEE Trans. Multimed. 15(3), 572–581 (2013)
McDonald, K., Smeaton, A.F.: A comparison of score, rank and probability-based fusion methods for video shot retrieval. In: Proceedings of the 4th International Conference on Image and Video Retrieval, CIVR’05, pp. 61–70 (2005)
Fu, Z., Ip, H.H.S., Lu, H., Lu, Z.: Multi-modal constraint propagation for heterogeneous image clustering. In: Candan, K.S., Panchanathan, S., Prabhakaran, B., Sundaram, H., Chi Feng, W., Sebe, N. (eds.) ACM Multimedia, pp. 143–152. ACM (2011)
Zhang, Y., Li, G., Chu, L., Wang, S., Zhang, W., Huang, Q.: Cross-media topic detection: a multi-modality fusion framework. In: Proceedings of the International Conference on Multimedia (2013)
Adams, W.H., Iyengar, G., Naphade, M.R., Neti, C., Nock, H.J., Smith, J.R.: Semantic indexing of multimedia content using visual, audio and text cues. EURASIP J. Appl. Signal Process. 2, 170–185 (2003)
Papandreou, G., Katsamanis, A., Pitsikalis, V., Maragos, P.: Adaptive multimodal fusion by uncertainty compensation with application to audiovisual speech recognition. IEEE Trans. Audio Speech Lang. Process. 17(3), 423–435 (2009)
Poh, N., Bengio, S.: How do correlation and variance of base-experts affect fusion in biometric authentication tasks? IEEE Trans. Signal Process. 53(11), 4384–4396 (2005)
Ding, C., He, X.: K-means clustering via principal component analysis. In: Proceedings of the Twenty-first International Conference on Machine learning, ICML ’04, pp. 29–36 (2004)
Xue, Z., Jiang, S., Li, G., Huang, Q., Zhang, W.: Cross-media topic detection associated with hot search queries. In: Proceedings of the Fifth International Conference on Internet Multimedia Computing and Service, ICIMCS ’13, pp. 403–406 (2013)
Saha, A., Sindhwani, V.: Dynamic nmfs with temporal regularization for online analysis of streaming text. In: Proceedings of NIPS Workshop on Machine Learning for Social Computing, pp. 1C8 (2010)
AlSumait, L., Barbara, D., Domeniconi, C.: On-line lda: adaptive topic models for mining text streams with applications to topic detection and tracking. In: Eighth IEEE International Conference on Data Mining, ICDM ’08, pp. 3–12 (2008)
Hoffman, M., Blei, D.M., Bach, F.: Online learning for latent Dirichlet allocation. In: NIPS (2010)
Dai, X.Y., Chen, Q.C., Wang, X.L., Xu, J.: Online topic detection and tracking of financial news based on hierarchical clustering. In: International Conference on Machine Learning and Cybernetics, ICMLC, vol. 6, pp. 3341–3346 (2010)
Freund, Y., Schapire, R.: A decision theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
Hastie, T., Simard, P.: Models and metrics for handwritten character recognition. Stat. Sci. 13(1), 54–65 (1998)
Yang, Y., Xu, D., Nie, F.P.: Ranking with local regression and global aignment for cross media retrieval. In: Proceedings of the 17th ACM International Conference on Multimedia, MM ’09, pp. 175–184 (2009)
Cao, J., Zhang, Y., Song, Y., Chen, Z., Zhang, X., Li, J.: Mcg-webv: a benchmark dataset for web video analysis. Technical Report, MCG-ICT-CAS-09-001 (2009)
Picard, R.R., Cook, R.D.: Cross-validation of regression models. J. Am. Stat. Assoc. 79(387), 575–583 (1984)
Acknowledgments
This work was supported by China Postdoctoral Science Foundation: 2012M520436, in part by National Basic Research Program of China (973 Program): 2012CB316400, National Natural Science Foundation of China: 61303153, 61025011, 61332016, 61322212, 61202234 and 61202322, Present Foundation of UCAS.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Li, G., Jiang, S., Zhang, W. et al. Online web video topic detection and tracking with semi-supervised learning. Multimedia Systems 22, 115–125 (2016). https://doi.org/10.1007/s00530-014-0402-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-014-0402-0