Abstract
The present paper advances a robust video fingerprinting system for tracking the visual content subjected to live recording. The methodological novelty of the system relies in creating synergies between architectural modules, designed so as to offer: (1) local visual feature representations, invariant with respect to scale, orientation and affine transformations; (2) scalable global feature representations invariant with respect to photometric transformations and (3) time-variant jitter synchronization. The system is tested on a reference database of 14 h of cinematographic content and on a query dataset of 28 h of video related to two use cases: (a) computer-generated distortions (Gaussian filtering, sharpening, rotations with 2°, conversion to grayscale, contrast changes, brightness changes, geometric random bending) and (b) live camera recording. The former use case resulted in ideal rate of false alarm, probability of missed detection of 0.02 and F1 score of 0.97. However, the applicative novelty is given by solving the latter use case: experimental values of the false alarm rate lower than 0.01, probability of missed detection of 0.04 and F1 score equal to 0.94 were obtained for content live recorded from theaters’ and PC screens; these results demonstrate the robustness of the advanced method against live camera recording.












Similar content being viewed by others
Notes
As the video fingerprinting system we advance in this paper is solely based on the video modality, a comparison under the MUSCLE benchmark framework will be carried out in Sect. 5.4–Functional stability.
References
Su, X., Huang, T., Gao, W.: Robust video fingerprinting based on visual attention regions, IEEE Int’l Conference on Acoustics. Speech Signal Process 109(1), 1525–1528 (2009). doi:10.1109/ICASSP.2009.4959886
Lee, S., Yoo, C.D.: Robust video fingerprinting for content-based video identification. IEEE Trans Circuits Syst Video Technol 18(7), 938–988 (2008). doi:10.1109/TCSVT.2008.920739
Douze, M., Gaidon, A., Jegou. H., Marszałek, M., Schmid, C.: INRIA-LEAR’s video copy detection system. TRECVID (2008)
Law-To, J., Buisson, O., Gouet-Brunet, V., Boujemaa, N.: Video copy detection on the Internet: the challenges of copyright and multiplicity. IEEE Int’l Conf Multimed Expo 2082–2085 (2007) doi:10.1109/ICME.2007.4285092
Jiang, M., Shu, F., Tian, Y., Huang, T.: Cascade of multimodal features and temporal pyramid matching. TRECVID (2011)
Garboan, A., Mitrea, M., Prêteux, F.: Cinematography sequences tracking by means of fingerprinting techniques. Ann Telecommun 68(3–4), 187–199 (2012). doi:10.1007/s12243-012-0334-7
Garboan, A., Mitrea, M., Prêteux, F.: Video retrieval by means of robust fingerprinting. IEEE Symposium on Consumer Electronics, 299–303 (2011). doi:10.1109/ISCE.2011.5973836
Garboan A, M. Mitrea., F. Prêteux.: Camcorder recording robust video fingerprinting. IEEE Symposium on Consumer Electronics, pp. 1–4 (2012). doi:10.1109/ISCE.2012.6241697
Garboan, A.: Towards camcorder recording robust video fingerprinting. PhD dissertation at Mines ParisTech, Paris (2012)
Coskun, B., Sankur, B., Memon, N.: Spatio-temporal transform based video hashing. IEEE Trans. Multimed 8(6), 1190–1208 (2006). doi:10.1109/NCC.2011.5734750
Hampapur, A., Bolle, RM.: Comparison of distance measures for video copy detection. IBM TJ Watson Research Center, International Conference on Multimedia and Expo, pp. 737–740 (2001) doi:10.1109/ICME.2001.1237827
Hampapur, A., Hyun, K.H., Bolle, R.M.: Comparison of sequence matching techniques for video copy detection, Storage and Retrieval for Media Databases, pp. 194–201 (2002)
Kim, C., Vasudev, B.: Spatiotemporal sequence matching for efficient video copy detection. IEEE Trans. Circuits Syst. Video Technol. 15(1), 127–132 (2005). doi:10.1109/TCSVT.2004.836751(410)1
Sarkar, A., Ghosh, P., Moxley, E., Manjunath, B.S.: Video fingerprinting: features for duplicate and similar video detection and query-based video retrieval. Multimed Content Access Algorithms Syst II, 68200E (2008)
Sarkar, A., Singh, V., Ghosh, P., Manjunath, B.S.: Efficient and robust detection of duplicate videos in a large database. IEEE Trans. Circuits Syst. Video Technol. 20(6), 870–885 (2010). doi:10.1109/TCSVT.2010.2046056
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf Theory 8(2), 179–187 (1962). doi:10.1109/TIT.1962.1057692
De Vleeschouwer, R.C., Lefebvre, F., Macq, B.: Robust video hashing based on radial projections of key frames. IEEE Trans Signal Process 53(10), 4020–4030 (2005). doi:10.1109/TSP.2005.855414
Shikui, W., Yao, Z., Ce, Z., Changsheng, X., Zhenfeng, Z.: Frame Fusion for Video Copy Detection. IEEE Trans. Circuits Syst. Video Technol. 21(1), 15–28 (2011). doi:10.1109/TCSVT.2011.2105554
Paschalakis, S., Iwamoto, K., Brasnett, P., Oami, R., Sprljan, N., Nomura, T., Yamada, A., Bober, M.: The MPEG-7 video signature tools for content identification. IEEE Trans. Circuits Syst. Video Technol. 22(7), 1050–1063 (2012). doi:10.1109/TCSVT.2012.2189791
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A Comparison of affine region detectors. Int J Comput Vis Arch 65, 43–72 (2000)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. J Comput Vis Springer Berl Heidelb 2350, 128–142 (2002)
Lindeberg, T., Garding, J.: Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. Elsevier Image Vis Comput 15, 415–434 (1997)
Lowe, D.G.: Object recognition from local scale-invariant features. Int’l Conf Comput Vis 2, 1150–1157 (1999). doi:10.1109/ICCV.1999.790410
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10), 1615–1630 (2005). doi:10.1109/TPAMI.2005.188
Beran, V., Řezníček, I.: Brno University of Technology at TRECVID 2011—Content-based Copy Detection. TRECVID (2011)
Liu, Z., Zavesky, E., Zhou, N., Shahraray, B.: AT&T Research at TRECVID 2011—Content Copy Detection Task. TRECVID (2011)
Zhao, L. W., Borth, D., Breuel. M. T.: University of Kaiserslautern at TRECVID 2011—Content-based Copy Detection Task. TRECVID (2011)
Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for large scale object retrieval. IEEE Conference on Computer Vision and Pattern Recognition, pp. 9–16 (2009) doi: 10.1109/CVPR.2009.5206529
Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. IEEE Int’l Conf Comput Vis 2, 1470–1477 (2003). doi:10.1109/ICCV.2003.1238663
Muja, M., Lowe, G. D.: Fast approximate nearest neighbors with automatic algorithm configuration. Int’l Conference on Computer Vision Theory and Applications, pp. 331–340 (2009)
Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. ACM Press (1999) ISBN: 020139829
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. IEEE Conf Comput Vis Pattern Recognit (2007). doi:10.1109/CVPR.2007.383172
Chum, O., Matas, J.: Matching with PROSAC - progressive sampling consensus. IEEE Conf Comput Vis Pattern Recognit (2005). doi:10.1109/CVPR.2005.221
Ni, K., Jin, H., Dellaert, F.: GroupSAC: efficient consensus in the presence of groupings. Int Conf Comput Vis (2009). doi:10.1109/ICCV.2009.5459241
Nister, Stewenius H.: Scalable recognition with a vocabulary tree. IEEE Conf Comput Vis Pattern Recognit 2, 2161–2168 (2006). doi:10.1109/CVPR.2006.264
Petitcolas, F.A.P.: Watermarking schemes evaluation. IEEE Trans. Signal Process 17(5), 58–64 (2000). doi:10.1109/79.879339
Law-To, J., Joly, A., Boujemaa, N.: Muscle-VCD-2007: a live benchmark for video copy detection. http://www-rocq.inria.fr/imedia/civr-bench/ (2007). Accessed 29 Sep 2014
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Xu.
Rights and permissions
About this article
Cite this article
Garboan, A., Mitrea, M. Live camera recording robust video fingerprinting. Multimedia Systems 22, 229–243 (2016). https://doi.org/10.1007/s00530-014-0447-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-014-0447-0