Abstract
It is still challenging to design a robust and efficient tracking algorithm in complex scenes. We propose a new object tracking algorithm with adaptive appearance learning and occlusion detection in an efficient self-tuning particle filter framework. The appearance of an object is modeled with a set of weighted and ordered submanifolds, which can guarantee the adaptability when there is fast illumination or pose change. To overcome the occlusion problem, we use the reconstruction error data of the appearance model to extract occlusion region by graph cuts. And the tracking result is improved with feedback of occlusion detection. The motion model is also integrated with adaptability to overcome the abrupt motion problem. To improve the efficiency of particle filter, the number of samples is tuned with respect to the scene conditions. Experimental results demonstrate that our algorithm can achieve great robustness, high accuracy and good efficiency in challenging scenes.

















Similar content being viewed by others
References
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)
Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern. Anal. Mach. Intel. 33(8), 1619–1632 (2011)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proc. British Machine Vision Conf. (2006)
Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Robust tracking-by-detection using a detector confidence particle filter. In: Proc. Int’l Conf. on Computer Vision, pp. 1515–1522 (2009)
Hong, Z., Mei, X., Prokhorov, D., Tao, D.: Tracking via robust multi-task multi-view joint sparse representation. In: Proc. Int’l Conf. on Computer Vision, pp. 649–656 (2013)
Yao, R., Shi, Q., Shen, C., Zhang, Y., van den Hengel, A.: Part-based visual tracking with online latent structural learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2363–2370 (2013)
Li, X., Shen, C., Dick, A., van den Hengel, A.: Learning compact binary codes for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2419–2426 (2013)
Ross, D.A., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77, 125–141 (2008)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intel. 25(5), 564–577 (2003)
Mei, X., Ling, H.: Robust visual tracking using L1 minimization. In: IEEE Conf. on Computer Vision and Pattern Recognition (2009)
Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. IEEE Trans. Pattern. Anal. Mach. Intel. 25(10), 1296–1311 (2003)
Leichter, I., Lindenbaum, M.: Tracking by affine kernel transformations using color and boundary cues. IEEE Trans. Pattern. Anal. Mach. Intel. 31(1), 164–171 (2009)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Proc. European Conf. Computer Vision (2008)
Lee, K.-C., Ho, J., Yang, M.-H., Kriegman, D.: Visual tracking and recognition using probabilistic appearance manifolds. Computer Vision and Image Understanding, pp. 303–331 (2005)
Elgammal, A.: Learning to track: conceptual manifold map for closed-form tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–730 (2005)
Jun, Y., Tao, D., Wang, M.: Adaptive hypergraph learning and its application in image classification. IEEE Trans. Image Processs. 21(7), 3262–3272 (2012)
Jun, Y., Rui, Y., Yan Tang, Y., Tao, D.: High-order distance-based multiview stochastic learning in image classification. IEEE Trans. Cybern. 44(12), 2431–2442 (2014)
Jun, Y., Tao, D., Li, J., Cheng, J.: Semantic preserving distance metric learning and applications. Inf. Sci. 281, 674–686 (2014)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)
Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: Proc. Int’l Conf. on Computer Vision, pp. 1195–1202 (2011)
Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient L1 tracker with occlusion detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)
Li, H., Shen, C., Shi, Q.: Real-time visual tracking using compressive sensing. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)
Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., Kulikowski, C.: Robust and fast collaborative tracking with two stage sparse optimization. In: European Conference on Computer Vision (2010)
Kwak, S., Nam, W., Han, B., Han, J.H.: Learning occlusion with likelihoods for visual tracking. In: Proc. Int’l Conf. on Computer Vision, pp. 1515–1522 (2011)
Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and K-selection. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)
Visvanathan, D.C.: Real-time tracking of non-rigid objects using mean shift. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 142–149 (2000)
Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)
Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press Professional Inc., San Diego (1987)
Kwon, J., Lee, K.M., Park, F.C.: Visual tracking via geometric particle filtering on the affine group with optimal importance functions. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)
Zhou, S.K., Chellappa, R.: Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans. Image Processs. 13(11), 1491–1506 (2004)
Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intel. 26(9), 1124–1137 (2004)
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: IEEE Conference on Computer Vision and Pattern Recognition (2006)
Hare, S., Saffari, A., Torr, P.S.: Structured output tracking with kernels. In Proc. IEEE Int. Conf. Computer Vision, pp. 263–270 (2011)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In Proc. Eur. Conf. Comp. Vision, pp. 866–879 (2012)
Acknowledgments
This work is supported by the Fundamental Research Funds for the Central Universities (2014JKF01116), the National High Technology Research and Development Program of China (2013AA014604), National Natural Science Foundation of China (61402484, 61203252), SAMSUNG GRO Program, CCF-Tencent Program and 360 OpenLab Program.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by T. Mei.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ding, J., Tang, Y., Tian, H. et al. Robust tracking with adaptive appearance learning and occlusion detection. Multimedia Systems 22, 255–269 (2016). https://doi.org/10.1007/s00530-015-0460-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-015-0460-y