Skip to main content
Log in

A multiple reversible watermarking technique for fingerprint authentication

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The classical fingerprint recognition system can be compromised at the database and the sensor. Therefore, to beef up security of the fingerprint recognition system, reversible watermarking is proposed to protect these two points. Reversible watermarks thwart manipulations, \({viz}\)., copy and replay attacks and ensure that native fingerprint recognition accuracy remains unaffected. Fingerprint-dependent watermark \(W_1\) authenticates the database and shields it against the copy attack. The second watermark \(W_2\) verifies fingerprint captured by the sensor and foil replay attack. \(W_2\) is derived from the higher order moments of the fingerprint. Divergence in the computed and extracted watermarks indicates loss of authenticity. The experimental results validate proposed hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Acharya, T., Tsai, P.S.: JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures. Wiley, New York (2005)

  2. Baldisserra, D., Franco, A., Maio, D., Maltoni, D.: Fake fingerprint detection by odor analysis. In: Advances in Biometrics, pp. 265–272. Springer, Berlin (2005)

  3. Bartlow, N., Kalka, N., Cukic, B., Ross, A.: Protecting iris images through asymmetric digital watermarking. In: 2007 IEEE Workshop on Automatic Identification Advanced Technologies, pp. 192–197. IEEE, New York (2007)

  4. Bezdek, J.C., Pal, S.K.: Fuzzy Models for Pattern Recognition, vol. 267. IEEE press, New York (1992)

  5. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Reversible data hiding. In: Proceedings of 2002 International Conference on Image Processing, vol. 2, pp. II-157–II-160. IEEE, New York (2002)

  6. Chen, H., Reid, E., Sinai, J., Silke, A., Ganor, B.: Terrorism Informatics: Knowledge Management and Data Mining for Homeland Security, vol. 18. Springer, Berlin (2008)

  7. E-governance standards: Standards for e-governance applications. http://egovstandards.gov.in/standardsandFramework/biometric-standards/fingerprint_image_data_standard_ver1.0.pdf/view (2008)

  8. El Bakrawy, L.M., Ghali, N.I., Hassanien, A.E., Peters, J.F.: Strict authentication of multimodal biometric images using near sets. In: Soft Computing in Industrial Applications, pp. 249–258. Springer, Berlin (2011)

  9. Fatindez-Zanuy, M.: On the vulnerability of biometric security systems. IEEE Aerosp. Electron. Syst. Mag. 3–8 (2004)

  10. Fingerprint database: Fvc 2000. http://bias.csr.unibo.it/fvc2000/databases.asp (2000)

  11. Fingerprint database: Fvc 2002. http://bias.csr.unibo.it/fvc2002/databases.asp (2002)

  12. Fingerprint database: Fvc 2004. http://bias.csr.unibo.it/fvc2004/databases.asp (2004)

  13. Fingerprint verification competition: Fvc 2006. http://bias.csr.unibo.it/fvc2006/ (2006)

  14. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB. Pearson Education, India (2004)

  15. Gupta, A.K., Raval, M.S.: A robust and secure watermarking scheme based on singular values replacement. Sadhana 37(4), 425–440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Homelend Security: Ntas guide. http://www.dhs.gov/xlibrary/assets/ntas/ntas-public-guide.pdf (2011)

  17. Huber, R., Stögner, H., Uhl, A.: Semi-fragile watermarking in biometric systems: template self-embedding. In: Computer Analysis of Images and Patterns, pp. 34–41. Springer, Berlin (2011)

  18. Hwang, J., Kim, J., Choi, J.: A reversible watermarking based on histogram shifting. In: Digital Watermarking, pp. 348–361. Springer, Berlin (2006)

  19. Jain, A.K., Feng, J.: Latent fingerprint matching. IEEE Trans Pattern Anal Mach Intell 33(1), 88–100 (2011)

    Article  Google Scholar 

  20. Jain, A.K., Kumar, A.: Biometrics of next generation: an overview. In: Second Generation Biometrics (2010)

  21. Jain, A.K., Prabhakar, S., Pankanti, S.: A filterbank-based representation for classification and matching of fingerprints. In: International Joint Conference on Neural Networks 1999, IJCNN’99, vol. 5, pp. 3284–3285. IEEE, New York (1999)

  22. Joshi, M., Joshi, V.B., Raval, M.S.: Multilevel semi-fragile watermarking technique for improving biometric fingerprint system security. In: Intelligent Interactive Technologies and Multimedia, pp. 272–283. Springer, Berlin (2013)

  23. Khan, M.K., Zhang, J., Tian, L.: Protecting biometric data for personal identification. In: Advances in Biometric Person Authentication, pp. 629–638. Springer, Berlin (2005)

  24. Komninos, N., Dimitriou, T.: Protecting biometric templates with image watermarking techniques. In: Advances in Biometrics, pp. 114–123. Springer, Berlin (2007)

  25. Kutter, M., Voloshynovskiy, S.V., Herrigel, A.: Watermark copy attack. In: Electronic Imaging, pp. 371–380. International Society for Optics and Photonics (2000)

  26. Li, C., Wang, Y., Ma, B., Zhang, Z.: Multi-block dependency based fragile watermarking scheme for fingerprint images protection. Multimed. Tools Appl. 64(3), 757–776 (2013)

    Article  Google Scholar 

  27. Lin, C.Y., Chang, S.F.: A robust image authentication method distinguishing jpeg compression from malicious manipulation. IEEE Trans Circuits Syst. Video Technol. 11(2), 153–168 (2001)

    Article  MathSciNet  Google Scholar 

  28. Liu, R., Tan, T.: An svd-based watermarking scheme for protecting rightful ownership. IEEE Trans. Multimed. 4(1), 121–128 (2002)

    Article  Google Scholar 

  29. Ma, B., Wang, Y., Li, C., Zhang, Z., Huang, D.: Secure multimodal biometric authentication with wavelet quantization based fingerprint watermarking. Multimed. Tools Appl. 1–30 (2013)

  30. MI5 Security Service: Threat levels. https://www.mi5.gov.uk/home/the-threats/terrorism/threat-levels.html (2014)

  31. NSTC, Committee on Technology, Committee on Homeland and National Security, Subcommittee on Biometrics: Fingerprint recognition. http://www.biometrics.gov/documents/fingerprintrec.pdf (2006)

  32. Prabhakar, S.: Fingerprint classification and matching using a filterbank. PhD thesis, Michigan State University (2001)

  33. Ratha, N.K., Bolle, R.M.: Effect of controlled image acquisition of fingerprint matching. In: International Conference on Pattern Recognition, vol. 2, pp. 1659–1659. IEEE Computer Society (1998)

  34. Raval, M.S.: A secure steganographic technique for blind steganalysis resistance. In: Seventh International Conference on Advances in Pattern Recognition 2009, ICAPR’09, pp. 25–28. IEEE, New York (2009)

  35. Sangalli, A.: The importance of being fuzzy: and other insights from the border between math and computers. Princeton University Press, New Jersey (1998)

  36. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  37. Vatsa, M., Singh, R., Noore, A., Houck, M.M., Morris, K.: Robust biometric image watermarking for fingerprint and face template protection. IEICE Electron. Express 3(2), 23–28 (2006)

    Article  Google Scholar 

  38. Wang, D.S., Li, J.P., Wen, X.Y.: Biometric image integrity authentication based on SVD and fragile watermarking. In: Congress on Image and Signal Processing 2008, CISP’08, vol. 5, pp. 679–682. IEEE, New York (2008)

  39. Watson, C., Wilson, C.: Effect of image size and compression on one-to-one fingerprint matching. US Department of Commerce, National Institute of Standards and Technology (2005)

  40. Whitelam, C., Osia, N., Bourlai, T.: Securing multimodal biometric data through watermarking and steganography. In: 2013 IEEE International Conference on Technologies for Homeland Security (HST), pp. 61–66. IEEE, New York (2013)

  41. Xiong, Z., Ramchandran, K., Orchard, M.T., Zhang, Y.Q.: A comparative study of DCT-and wavelet-based image coding. IEEE Trans. Circuits Syst. Video Technol. 9(5), 692–695 (1999)

    Article  Google Scholar 

  42. Zheng, D., Liu, Y., Zhao, J., Saddik, A.E.: A survey of RST invariant image watermarking algorithms. ACM Comput. Surv. (CSUR) 39(2), 5 (2007)

    Article  Google Scholar 

  43. Zhou, B., Chen, J.: A geometric distortion resilient image watermarking algorithm based on SVD. J. Image Graph. 4, 022 (2004)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Board of Research in Nuclear Science (BRNS), Department of Atomic Energy, Government of India for providing a grant to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav B. Joshi.

Additional information

Communicated by T. Haenselmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, V.B., Raval, M.S., Gupta, D. et al. A multiple reversible watermarking technique for fingerprint authentication. Multimedia Systems 22, 367–378 (2016). https://doi.org/10.1007/s00530-015-0465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-015-0465-6

Keywords

Navigation