Abstract
Image saliency contributes to rank the unordered tags extracted from social media, but the existing saliency detection methods can hardly efficiently handle massive images in tag ranking. In this paper, we focus on improving the efficiency of saliency detection methods by applying them on the sampled images with suitable resolutions. We extensively investigate the influence of image resolution to saliency detection performance of the typical methods, and summarize a sampling strategy for different categories of salient object detection methods. Furthermore, we validate the effectiveness of the sampling strategy by applying the salient object detection methods on the sampled images with the selected resolutions in tag ranking. The experimental results show that sampling can significantly improve the efficiency of the existing salient object detection methods without obvious loss in effectiveness.








Similar content being viewed by others
References
Sang, J., Xu, C.: Right buddy makes the difference: An early exploration of social relation analysis in multimedia applications. In: ACM International Conference on Multimedia, ACM, pp. 19–28 (2012)
Zhang, H., Yang, Y., Luan, H., Yang, S., Chua, T.S.: Start from scratch: towards automatically identifying, modeling, and naming visual attributes. In: ACM International Conference on Multimedia, ACM, pp. 187–196 (2014)
Zheng, L., Wang, S., Guo, P., Liang, H., Tian, Q.: Tensor index for large scale image retrieval. Multimed. Syst. 21(6), 569–579 (2015)
Cheng, Z., Shen, J.: On very large scale test collection for landmark image search benchmarking. Signal Process. 124, 13–26 (2016)
Corridoni, J.M., Del Bimbo, A., Pala, P.: Image retrieval by color semantics. Multimed. Syst. 7(3), 175–183 (1999)
Xu, X., Geng, W., Ju, R., Yang, Y., Ren, T., Wu, G.: Obsir: object-based stereo image retrieval. In: IEEE International Conference on Multimedia and Expo, IEEE, pp. 1–6 (2014)
Cao, W., Liu, N., Kong, Q., Feng, H.: Content-based image retrieval using high-dimensional information geometry. Sci. China Inf. Sci. 57(7), 1–11 (2014)
Zhu, L., Shen, J., Xie, L.: Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Trans. Knowl. Data Eng. 29(2), 472–486 (2016)
Zhao, N., Hong, R., Wang, M., Hu, X., Chua, T.S.: Searching for recent celebrity images in microblog platform. In: ACM International Conference on Multimedia, ACM, pp. 841–844 (2014)
Zhang, H., Shang, X., Luan, H., Wang, M., Chua, T.S.: Learning from collective intelligence: Feature learning using social images and tags. ACM Trans. Multimed. Comput. Commun. Appl. 13, 1–23 (2016)
Sang, J., Xu, C., Liu, J.: User-aware image tag refinement via ternary semantic analysis. IEEE Trans. Multimed. 14(3), 883–895 (2012)
Zhong, S.H., Liu, Y., Liu, Y.: Bilinear deep learning for image classification. In: ACM International Conference on Multimedia, ACM, pp. 343–352 (2011)
Tang, J., Zha, Z.J., Tao, D., Chua, T.S.: Semantic-gap-oriented active learning for multilabel image annotation. IEEE Trans. Image Process. 21(4), 2354–2360 (2012)
Gao, Z., Zhang, L.F., Chen, M.Y., Hauptmann, A., Zhang, H., Cai, A.N.: Enhanced and hierarchical structure algorithm for data imbalance problem in semantic extraction under massive video dataset. Multimed. Tools Appl. 68(3), 641–657 (2014)
Zhang, H., Shang, X., Yang, W., Xu, H., Luan, H., Chua, T.S.: Online collaborative learning for open-vocabulary visual classifiers. In: IEEE International Conference on Computer Vision and Pattern Recognition, ACM (2016)
Liu, A.A., Su, Y.T., Nie, W.Z., Kankanhalli, M.: Hierarchical clustering multi-task learning for joint human action grouping and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 102–114 (2017)
Sang, J., Xu, C.: Browse by chunks: topic mining and organizing on web-scale social media. ACM Trans. Multimed. Comput. Commun. Appl. 7(1), 30 (2011)
Wang, M., Ni, B., Hua, X.S., Chua, T.S.: Assistive tagging: a survey of multimedia tagging with human–computer joint exploration. ACM Comput. Surv. 44(4), 25 (2012)
Gao, Y., Wang, M., Zha, Z.J., Shen, J., Li, X., Wu, X.: Visual–textual joint relevance learning for tag-based social image search. IEEE Trans. Image Process. 22(1), 363–376 (2013)
Liu, D., Hua, X.S., Yang, L., Wang, M., Zhang, H.J.: Tag ranking. In: International World Wide Web Conference, ACM, pp. 351–360 (2009)
Li, X., Snoek, C.G., Worring, M.: Learning tag relevance by neighbor voting for social image retrieval. In: ACM International Conference on Multimedia Information Retrieval, ACM, pp. 180–187 (2008)
Feng, S., Lang, C., Xu, D.: Beyond tag relevance: integrating visual attention model and multi-instance learning for tag saliency ranking. In: ACM International Conference on Image and Video Retrieval, ACM, pp. 288–295 (2010)
Nguyen, T.V., Xu, M., Gao, G., Kankanhalli, M., Tian, Q., Yan, S.: Static saliency vs. dynamic saliency: a comparative study. In: ACM International Conference on Multimedia, ACM, pp. 987–996 (2013)
Jian, M., Lam, K.M., Dong, J., Shen, L.: Visual-patch-attention-aware saliency detection. IEEE Trans. Cybernet. 45(8), 1575–1586 (2015)
Zhong, S.H., Liu, Y., Ng, T.Y., Liu, Y.: Perception-oriented video saliency detection via spatio-temporal attention analysis. Neurocomputing 207, 178–188 (2016)
Ren, T., Liu, Y., Wu, G.: Image retargeting based on global energy optimization. In: IEEE International Conference on Multimedia and Expo, IEEE, pp. 406–409 (2009)
Du, H., Liu, Z., Jiang, J., Shen, L.: Stretchability-aware block scaling for image retargeting. J. Vis. Commun. Image Represent. 24(4), 499–508 (2013)
Wei, Y., Xia, W., Lin, M., Huang, J., Ni, B., Dong, J., Zhao, Y., Yan, S.: Hcp: a flexible cnn framework for multi-label image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1901–1907 (2015)
Lu, Y., Lai, Z., Fan, Z., Cui, J., Zhu, Q.: Manifold discriminant regression learning for image classification. Neurocomputing 166, 475–486 (2015)
Bao, B.K., Liu, G., Xu, C., Yan, S.: Inductive robust principal component analysis. IEEE Trans. Image Process. 21(8), 3794–3800 (2012)
Kuang, H., Chong, Y., Li, Q., Zheng, C.: Mutualcascade method for pedestrian detection. Neurocomputing 137, 127–135 (2014)
Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)
Wang, W., Lang, C., Feng, S.: Contextualizing tag ranking and saliency detection for social images. In: International Conference on Multimedia Modeling, Springer, pp. 428–435 (2013)
Cao, Y., Kang, K., Zhang, S., Zhang, J., Wang, Z.: Automatic tag saliency ranking for stereo images. Neurocomputing 172, 9–18 (2016)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp. 3166–3173 (2013)
Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: IEEE International Conference on Computer Vision, IEEE, 1665–1672 (2013)
Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2814–2821 (2014)
Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mĕch, R.: Minimum barrier salient object detection at 80 fps. In: IEEE International Conference on Computer Vision, IEEE (2015)
Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2007)
Guo, J., Ren, T., Bei, J.: A comprehensive study of salient object detection on diverse image resolutions. In: National Conference on Multimedia Technology, CCF (2016)
Zhuang, J., Hoi, S.C.: A two-view learning approach for image tag ranking. In: ACM International Conference on Web Search and Data Mining, ACM, pp. 625–634 (2011)
Tang, J., Li, M., Li, Z., Zhao, C.: Tag ranking based on salient region graph propagation. Multimed. Syst. 21(3), 267–275 (2015)
Feng, S., Lang, C., Liu, H., Huang, X.: Adaptive all-season image tag ranking by saliency-driven image pre-classification. J. Vis. Commun. Image Represent. 24(7), 1031–1039 (2013)
Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp. 1597–1604 (2009)
Achanta, R., Süsstrunk, S.: Saliency detection using maximum symmetric surround. In: IEEE International Conference on Image Processing, IEEE, pp. 2653–2656 (2010)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Ju, R., Liu, Y., Ren, T., Ge, L., Wu, G.: Depth-aware salient object detection using anisotropic center-surround difference. Signal Process. Image Commun. 38, 115–126 (2015)
Guo, J., Ren, T., Bei, J.: Salient object detection for rgb-d image via saliency evolution. In: IEEE International Conference on Multimedia and Expo, IEEE (2016)
Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from national university of Singapore. In: ACM International Conference on Image and Video Retrieval, ACM, p. 48 (2009)
Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp. 248–255 (2014)
Zhang, M.L., Zhou, Z.H.: Adapting RBF neural networks to multi-instance learning. Neural Process. Lett. 23(1), 1–26 (2006)
Acknowledgements
The authors would like to thank the anonymous reviews for their helpful suggestion. This work is supported by the National Science Foundation of China (61321491, 61202320), Research Fund of the State Key Laboratory for Novel Software Technology at Nanjing University (ZZKT2016B09), and Collaborative Innovation Center of Novel Software Technology and Industrialization.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guo, J., Ren, T., Huang, L. et al. Saliency detection on sampled images for tag ranking. Multimedia Systems 25, 35–47 (2019). https://doi.org/10.1007/s00530-017-0546-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-017-0546-9