Abstract
X-ray luminescence computed tomography (XLCT) is a promising imaging technology for biological applications. The reconstruction, however, suffers from severe ill-posedness due to the strong scattering of photon propagation in biological tissues. A permissible region (PR) extraction based on a knowledge priori is proposed to alleviate the ill-posedness in this paper. N groups of recovered result with N groups of different discretized mesh have provided N groups of PR for XLCT, which can be considered as a knowledge priori. The intersection of N groups of PR provides a reasonable PR of nanophosphor. With the PR, an improved recovered result can be obtained. Numerical simulation experiments and physical phantom experiments on a cylinder have demonstrated the feasibility and effectiveness of this strategy.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahmad, M., Pratx, G., Bazalova, M., Xing, L.: X-ray luminescence and x-ray fluorescence computed tomography: new molecular imaging modalities. IEEE Access. 2, 1051–1061 (2014)
Liu, X., Liao, Q., Wang, H.: Fast X-ray luminescence computed tomography imaging. IEEE Trans Biomed Eng. 61(6), 1621–1627 (2014)
Chen, D., Zhu, S., Cao, X., Zhao, F., Liang, J.: X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method. Biomed Opt Express. 6(7), 2649–2663 (2015)
Liu, X., Zhang, B., Luo, J., Bai, J.: 4-D reconstruction for dynamic fluorescence diffuse optical tomography. IEEE Trans Med Imaging. 31(11), 2120–2132 (2012)
Mohajerani, P., Ntziachristos, V.: An inversion scheme for hybrid fluorescence molecular tomography using a fuzzy inference system. IEEE Trans. Med. Imaging. 35(2), 381–390 (2016)
Wang, G., Cong, W., Durairaj, K., Qian, X., Shen, H., Sinn, P., Hoffman, E., McLennan, G., Henry, M.: In vivo mouse studies with bioluminescence tomography. Opt. Express. 14(17), 7801–7809 (2006)
He, X.W., Liang, J.M., Wang, X.R., et al.: Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method. Opt. Express. 18(24), 24825–24841 (2010)
Wang, C., Volotskova, O., Lu, K., Ahmad, M., Sun, C., Xing, L., Lin, W.: Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal–organic frameworks for highly efficient X-ray scintillation. J. Am. Chem. Soc. 136(17), 6171–6174 (2014)
Osakada, Y., Pratx, G., Sun, C., Sakamoto, M., Ahmad, M., Volotskova, O., Ong, Q., Teranishi, T., Harada, Y., Xing, L., Cui, B.: Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters. Chem. Commun. 50(27), 3549–3551 (2014)
Pratx, G., Carpenter, C.M., Sun, C., Rao, R.P., Xing, L.: Tomographic molecular imaging of X-ray-excitable nanoparticles. Opt. Lett. 35(20), 3345–3347 (2010)
Li, C., Di, K., Bec, J., Cherry, S.R.: X-ray luminescence optical tomography imaging: experimental studies. Opt. Lett. 38(13), 2339–2341 (2013)
Chen, D., Zhu, S., Yi, H., Zhang, X., Chen, D., Liang, J., Tian, J.: Cone beam X-ray luminescence computed tomography: a feasibility study. Med. Phys. 40(3), 031111 (2013)
Cong, W., Wang, G.: X-ray fan-beam luminescence tomography. Austin J. Biomed. Eng. 1(5), 1024 (2014)
Liu, X., Liao, Q., Wang, H., Yan, Z.: Excitation-resolved cone-beam X-ray luminescence tomography. J. Biomed. Opt. Lett. 20(7), 070501 (2015)
Cong, W., Pan, Z., Filkins, R., Srivastava, A., Ishaque, N., Stefanov, P., Wang, G.: X-ray micromodulated luminescence tomography in dual-cone geometry. J. Biomed. Opt. 19(7), 076002 (2014)
Zhang, J., Chen, D., Liang, J., Xue, H., Lei, J., Wang, Q., Chen, D., Meng, M., Jin, Z., Tian, J.: Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification. Biomed. Opt. Express. 5(6), 1861 (2014)
Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans. Image Process. 26(10), 4753–4764 (2017)
Liu, X., Liao, Q., Wang, H.: In vivo X-ray luminescence tomographic imaging with single-view data. Opt. Lett. 38(22), 4530–4533 (2013)
Zhang, J., Shi, J., Cao, X., Liu, F., Bai, J., Luo, J.: Fast reconstruction of fluorescence molecular tomography via a permissible region extraction strategy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 31(8), 1886–1894 (2014)
Qin, C., Zhu, S., Feng, J., Zhong, J., Ma, X., Wu, P., Tian, J.: Comparison of permissible source region and multispectral data using efficient bioluminescence tomography method. J. Biophotonics. 4(11–12), 824–839 (2011)
Shi, J., Liu, F., Zhang, J., Luo, J., Bai, J.: Fluorescence molecular tomography reconstruction via discrete cosine transform-based regularization. J. Biomed. Opt. 20(5), 055004 (2015)
Seferis, I., Michail, C., Valais, I., Zeler, J., Liaparinos, P., Fountos, G., Kalyvas, N., David, S., Stromatiad, F., Zycha, E., Kandarakisc, I., Panayiotakisb, G.: Imaging performance of a thin Lu2O3:Eu nanophosphor scintillating screen coupled to a high resolution CMOS sensor under X-ray radiographic conditions: comparison with Gd2O2S:Eu conventional phosphor screen. Spie Med. Imaging, 9033(9), 90333T–90333T-6 (2014)
Klose, A.D., Ntziachristos, V., Hielscher, A.H.: The inverse source problem based on the radiative transfer equation in optical molecular imaging. J. Comput. Phys. 202(1), 323–345 (2005)
Schweiger, M., Arridge, S.R., Hiraoka, M., Delpy, D.T.: The finite element method for the propagation of light in scattering media: boundary and source conditions. Thames Hudson. 106(5–6), 355–368 (1999)
Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Conf. Signal. 1, 1–3 (1995)
Dogdas, B., Stout, D., Chatziioannou, A.F., Leahy, R.M.: Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys. Med. Biol. 52(3), 577 (2007)
Cong, W.X., Shen, H.O., Wang, G.: Spectrally resolving and scattering-compensated X-ray luminescence/fluorescence computed tomography. J. Biomed. Opt. 16(6), 409–416 (2011)
He, X., Dong, F., Yu, J., Guo, H., Hou, Y.: Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation. J. Opt. Soc. Am. A. 32(11), 1928–1935 (2015)
Yi, H., Zhang, X., Peng, J., Zhao, F., Wang, X., Hou, Y., Chen, D., He, X.: Reconstruction for limited-projection fluorescence molecular tomography based on a double-mesh strategy. BioMed Res. Int. 2016, 5682851 (2016)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant Nos. 61372046, 11571012, 61601363, 61640418, 61601154, the Project funded by China Postdoctoral Science Foundation under Grant No. 2016M602851, the Science and Technology Plan Program in Shaanxi Province of China under Grant No. 2015KW-002, Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No. 16JK1772. The authors would like to thank the School of Life Science and Technology of Xidian University for providing phantom experimental data.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interests regarding the publication of this paper.
Rights and permissions
About this article
Cite this article
Yi, H., Qu, X., Sun, Y. et al. A permissible region extraction based on a knowledge priori for X-ray luminescence computed tomography. Multimedia Systems 25, 147–154 (2019). https://doi.org/10.1007/s00530-017-0576-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-017-0576-3
Keywords
Profiles
- Huangjian Yi View author profile