Skip to main content
Log in

Adaptive kernelized evidential clustering for automatic 3D tumor segmentation in FDG–PET images

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Automatically and reliably delineating tumor contours in noisy and blurring PET images is a challenging work in clinical oncology. In this paper, we introduce a specific unsupervised learning method to this end. More specifically, a robust clustering algorithm with spatial knowledge enhancement is developed in the framework of belief functions, a formal and powerful tool for modeling and reasoning with uncertain and/or imprecise information. Diverse patch-based image features are extracted to comprehensively describe PET image voxels. Then, informative input features are iteratively selected to learn an adaptive kernel-induced metric in an unsupervised way, so as to precisely grouping voxels into different clusters. The effectiveness of the proposed method has been evaluated on FDG–PET images for lung tumor patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belhassen, S., Zaidi, H.: A novel fuzzy c-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med. Phys. 37(3), 1309–1324 (2010)

    Article  Google Scholar 

  3. Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. B Cybern. 34(4), 1907–1916 (2004)

    Article  Google Scholar 

  4. Denœux, T., Masson, M.H.: EVCLUS: evidential clustering of proximity data. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 95–109 (2004)

    Article  Google Scholar 

  5. Denœux, T., Sriboonchitta, S., Kanjanatarakul, O.: Evidential clustering of large dissimilarity data. Knowl. Based Syst. 106, 179–195 (2016)

    Article  MATH  Google Scholar 

  6. Foster, B., Bagci, U., Mansoor, A., Xu, Z., Mollura, D.J.: A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76–96 (2014)

    Article  Google Scholar 

  7. Hatt, M., Rest, L., Cheze, C., Turzo, A., Roux, C., Visvikis, D.: A fuzzy locally adaptive bayesian segmentation approach for volume determination in PET. IEEE Trans. Med. Imaging 28(6), 881–893 (2009)

    Article  Google Scholar 

  8. Hatt, M., Tixier, F., Visvikis, D., Le Rest, C.C.: Radiomics in PET/CT: more than meets the eye? J. Nucl. Med. 58(3), 365–366 (2017)

    Article  Google Scholar 

  9. Jiao, L., Pan, Q., Denoeux, T., Liang, Y., Feng, X.: Belief rule-based classification system: Extension of FRBCS in belief functions framework. Inf. Sci. 309, 26–49 (2015)

    Article  MATH  Google Scholar 

  10. Jousselme, A.L., Grenier, D., Bossé, É.: A new distance between two bodies of evidence. Inf. Fusion 2(2), 91–101 (2001)

    Article  Google Scholar 

  11. Lelandais, B., Ruan, S., Denœux, T., Vera, P., Gardin, I.: Fusion of multi-tracer PET images for dose painting. Med. Image Anal. 18(7), 1247–1259 (2014)

    Article  Google Scholar 

  12. Li, H., Thorstad, W.L., Biehl, K.J., Laforest, R., Su, Y., Shoghi, K.I., Donnelly, E.D., Low, D.A., Lu, W.: A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. Med. Phys. 35(8), 3711–3721 (2008)

    Article  Google Scholar 

  13. Lian, C., Ruan, S., Denœux, T.: Dissimilarity metric learning in the belief function framework. IEEE Trans. Fuzzy Syst. 24(6), 1555–1564 (2016)

    Article  Google Scholar 

  14. Lian, C., Ruan, S., Denœux, T., Jardin, F., Vera, P.: Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med. Image Anal. 32, 257–268 (2016)

    Article  Google Scholar 

  15. Lian, C., Ruan, S., Denœux, T., Li, H., Vera, P.: Spatial evidential clustering with adaptive distance metric for tumor segmentation in FDG-PET images. IEEE Trans. Biomed. Eng. (2017). https://doi.org/10.1109/TBME.2017.2688453

    Google Scholar 

  16. Liu, M., Zhang, D.: Feature selection with effective distance. Neurocomputing 215, 100–109 (2016)

    Article  Google Scholar 

  17. Liu, M., Zhang, D.: Pairwise constraint-guided sparse learning for feature selection. IEEE Trans. Cybern. 46(1), 298–310 (2016)

    Article  MathSciNet  Google Scholar 

  18. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

    Article  Google Scholar 

  19. Liu, M., Zhang, J., Yap, P.T., Shen, D.: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med. Image Anal. 36, 123–134 (2017)

    Article  Google Scholar 

  20. Liu, Z.G., Pan, Q., Dezert, J., Han, J.W., He, Y.: Classifier fusion with contextual reliability evaluation. IEEE Trans. Cybern. (2017). https://doi.org/10.1109/TCYB.2017.2710205

  21. Liu, Z.G., Pan, Q., Dezert, J., Mercier, G.: Credal c-means clustering method based on belief functions. Knowl. Based Syst. 74, 119–132 (2015)

    Article  Google Scholar 

  22. Liu, Z.G., Pan, Q., Dezert, J., Mercier, G.: Hybrid classification system for uncertain data. IEEE Trans. Syst. Man Cybern. Syst. 47(10), 2783–2790 (2017)

  23. Masson, M.H., Denœux, T.: ECM: An evidential version of the fuzzy c-means algorithm. Pattern Recogn. 41(4), 1384–1397 (2008)

    Article  MATH  Google Scholar 

  24. Onoma, D., Ruan, S., Thureau, S., Nkhali, L., Modzelewski, R., Monnehan, G., Vera, P., Gardin, I.: Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm. Comput. Med. Imaging Graph. 38(8), 753–763 (2014)

    Article  Google Scholar 

  25. Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  26. Soh, L.K., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)

    Article  Google Scholar 

  27. Thibault, G., Angulo, J., Meyer, F.: Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans. Biomed. Eng. 61(3), 630–637 (2014)

    Article  Google Scholar 

  28. Vauclin, S., Doyeux, K., Hapdey, S., Edet-Sanson, A., Vera, P., Gardin, I.: Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models. Phys. Med. Biol. 54(22), 6901 (2009)

    Article  Google Scholar 

  29. Waltz, R.A., et al.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107(3), 391–408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, J., Liang, J., Zhang, C., Zhao, H.: Scale invariant texture representation based on frequency decomposition and gradient orientation. Pattern Recogn. Lett. 51, 57–62 (2015)

    Article  Google Scholar 

  31. Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans. Image Process. 22(1), 31–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, J., Liu, M., An, L., Gao, Y., Shen, D.: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J. Biomed. Health Inf. 21(6), 1607–1616 (2017)

  33. Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans. Image Process. 26(10), 4753–4764 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou, K., Martin, A., Pan, Q., Liu, Z.G.: ECMdd: Evidential c-medoids clustering with multiple prototypes. Pattern Recogn. 60, 239–257 (2016)

    Article  Google Scholar 

  35. Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1263–1275 (2017)

  36. Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737–3750 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfeng Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Lian, C., Vera, P. et al. Adaptive kernelized evidential clustering for automatic 3D tumor segmentation in FDG–PET images. Multimedia Systems 25, 127–133 (2019). https://doi.org/10.1007/s00530-017-0579-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-017-0579-0

Keywords

Navigation