Abstract
Automatically and reliably delineating tumor contours in noisy and blurring PET images is a challenging work in clinical oncology. In this paper, we introduce a specific unsupervised learning method to this end. More specifically, a robust clustering algorithm with spatial knowledge enhancement is developed in the framework of belief functions, a formal and powerful tool for modeling and reasoning with uncertain and/or imprecise information. Diverse patch-based image features are extracted to comprehensively describe PET image voxels. Then, informative input features are iteratively selected to learn an adaptive kernel-induced metric in an unsupervised way, so as to precisely grouping voxels into different clusters. The effectiveness of the proposed method has been evaluated on FDG–PET images for lung tumor patients.



Similar content being viewed by others
References
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
Belhassen, S., Zaidi, H.: A novel fuzzy c-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med. Phys. 37(3), 1309–1324 (2010)
Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. B Cybern. 34(4), 1907–1916 (2004)
Denœux, T., Masson, M.H.: EVCLUS: evidential clustering of proximity data. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 95–109 (2004)
Denœux, T., Sriboonchitta, S., Kanjanatarakul, O.: Evidential clustering of large dissimilarity data. Knowl. Based Syst. 106, 179–195 (2016)
Foster, B., Bagci, U., Mansoor, A., Xu, Z., Mollura, D.J.: A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76–96 (2014)
Hatt, M., Rest, L., Cheze, C., Turzo, A., Roux, C., Visvikis, D.: A fuzzy locally adaptive bayesian segmentation approach for volume determination in PET. IEEE Trans. Med. Imaging 28(6), 881–893 (2009)
Hatt, M., Tixier, F., Visvikis, D., Le Rest, C.C.: Radiomics in PET/CT: more than meets the eye? J. Nucl. Med. 58(3), 365–366 (2017)
Jiao, L., Pan, Q., Denoeux, T., Liang, Y., Feng, X.: Belief rule-based classification system: Extension of FRBCS in belief functions framework. Inf. Sci. 309, 26–49 (2015)
Jousselme, A.L., Grenier, D., Bossé, É.: A new distance between two bodies of evidence. Inf. Fusion 2(2), 91–101 (2001)
Lelandais, B., Ruan, S., Denœux, T., Vera, P., Gardin, I.: Fusion of multi-tracer PET images for dose painting. Med. Image Anal. 18(7), 1247–1259 (2014)
Li, H., Thorstad, W.L., Biehl, K.J., Laforest, R., Su, Y., Shoghi, K.I., Donnelly, E.D., Low, D.A., Lu, W.: A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. Med. Phys. 35(8), 3711–3721 (2008)
Lian, C., Ruan, S., Denœux, T.: Dissimilarity metric learning in the belief function framework. IEEE Trans. Fuzzy Syst. 24(6), 1555–1564 (2016)
Lian, C., Ruan, S., Denœux, T., Jardin, F., Vera, P.: Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med. Image Anal. 32, 257–268 (2016)
Lian, C., Ruan, S., Denœux, T., Li, H., Vera, P.: Spatial evidential clustering with adaptive distance metric for tumor segmentation in FDG-PET images. IEEE Trans. Biomed. Eng. (2017). https://doi.org/10.1109/TBME.2017.2688453
Liu, M., Zhang, D.: Feature selection with effective distance. Neurocomputing 215, 100–109 (2016)
Liu, M., Zhang, D.: Pairwise constraint-guided sparse learning for feature selection. IEEE Trans. Cybern. 46(1), 298–310 (2016)
Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)
Liu, M., Zhang, J., Yap, P.T., Shen, D.: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med. Image Anal. 36, 123–134 (2017)
Liu, Z.G., Pan, Q., Dezert, J., Han, J.W., He, Y.: Classifier fusion with contextual reliability evaluation. IEEE Trans. Cybern. (2017). https://doi.org/10.1109/TCYB.2017.2710205
Liu, Z.G., Pan, Q., Dezert, J., Mercier, G.: Credal c-means clustering method based on belief functions. Knowl. Based Syst. 74, 119–132 (2015)
Liu, Z.G., Pan, Q., Dezert, J., Mercier, G.: Hybrid classification system for uncertain data. IEEE Trans. Syst. Man Cybern. Syst. 47(10), 2783–2790 (2017)
Masson, M.H., Denœux, T.: ECM: An evidential version of the fuzzy c-means algorithm. Pattern Recogn. 41(4), 1384–1397 (2008)
Onoma, D., Ruan, S., Thureau, S., Nkhali, L., Modzelewski, R., Monnehan, G., Vera, P., Gardin, I.: Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm. Comput. Med. Imaging Graph. 38(8), 753–763 (2014)
Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)
Soh, L.K., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)
Thibault, G., Angulo, J., Meyer, F.: Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans. Biomed. Eng. 61(3), 630–637 (2014)
Vauclin, S., Doyeux, K., Hapdey, S., Edet-Sanson, A., Vera, P., Gardin, I.: Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models. Phys. Med. Biol. 54(22), 6901 (2009)
Waltz, R.A., et al.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107(3), 391–408 (2006)
Zhang, J., Liang, J., Zhang, C., Zhao, H.: Scale invariant texture representation based on frequency decomposition and gradient orientation. Pattern Recogn. Lett. 51, 57–62 (2015)
Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans. Image Process. 22(1), 31–42 (2013)
Zhang, J., Liu, M., An, L., Gao, Y., Shen, D.: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J. Biomed. Health Inf. 21(6), 1607–1616 (2017)
Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans. Image Process. 26(10), 4753–4764 (2017)
Zhou, K., Martin, A., Pan, Q., Liu, Z.G.: ECMdd: Evidential c-medoids clustering with multiple prototypes. Pattern Recogn. 60, 239–257 (2016)
Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1263–1275 (2017)
Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737–3750 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, F., Lian, C., Vera, P. et al. Adaptive kernelized evidential clustering for automatic 3D tumor segmentation in FDG–PET images. Multimedia Systems 25, 127–133 (2019). https://doi.org/10.1007/s00530-017-0579-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-017-0579-0