Abstract
With the development of cloud computing, cloud data centers provide powerful platforms for multimedia services. Still, QoS routing and resource allocation are two main challenges to optimize the multimedia services. The QoS routing affects the transmission time, while the resource allocation determines the resource utilization in cloud. In this paper, we introduce a cloud network model. Based on the model, we analyze the transmission delay among data centers, and propose a QoS-SPA routing algorithm. Furthermore, we study the optimal VM allocation problem with the objective to minimize the resource cost subject to the network transmission delay among data centers. As the optimization problem is NP-hard, we propose an efficient heuristic, price-performance ratio-based heuristic algorithm (PPR-HA), to achieve a sub-optimal solution. The extensive experimental results demonstrate that joint optimization of routing and VM with QoS-SPA and PPR-HA can effectively reduce the transmission delay among data centers and improve the resource utilization in cloud.













Similar content being viewed by others
Notes
CAICT White paper of cloud computing 2016, http://www.catr.cn/kxyj/qwfb/bps/201608/t20160831_2177147.htm/.
Global infrastructure of Amazon AWS, https://aws.amazon.com/about-aws/global-infrastructure/?nc1=h_ls.
References
Zhu, W., Luo, C., Wang, J., Li, S.: Multimedia cloud computing. Signal Process. Mag. IEEE 28(3), 59–69 (2011)
Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A.: Cloud computing: distributed internet computing for it and scientific research. Internet Comput. IEEE 13(5), 10–13 (2009)
Manvi, S.S., Shyam, G.K.: Resource management for infrastructure as a service (IAAS) in cloud computing: a survey. J. Netw. Comput. Appl. 41(1), 424–440 (2014)
Sun, L., Dong, H., Hussain, F.K., Hussain, O.K., Chang, E.: Cloud service selection: state-of-the-art and future research directions. J. Netw. Comput. Appl. 45(10), 134–150 (2014)
Michael, R.G., David, S.J.: Computers and Intractability: A Guide to the Theory of np-Completeness. WH Freeman & Co., San Francisco (1979)
Zhang, H., Chen, K., Bai, W., Han, D., Tian, C., Wang, H., Guan, H., Zhang, M.: Guaranteeing deadlines for inter-datacenter transfers. IEEE/ACM Trans. Network. PP(99), 1–17 (2017)
Lin, B., Guo, W., Lin, X.: Online optimization scheduling for scientific workflows with deadline constraint on hybrid clouds. Concurr. Comput. Pract. Exp. 28(11), 3079–3095 (2016)
Lin, S.C., Akyildiz, I.F., Wang, P., Luo, M.: Qos-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach. IEEE International Conference on Services Computing, pp. 25–33 (2016)
Wang, P., Lin, S.C., Luo, M.: A framework for qos-aware traffic classification using semi-supervised machine learning in SDNS. IEEE International Conference on Services Computing, pp. 760–765 (2016)
Vijay, U., Awasthi, L.K.: Scope of cloud computing for multimedia application. In: Proceedings of International Conference on Internet Computing and Information Communications, pp. 219–223, Springer (2014)
Liu, Y., Niu, D., Li, B.: Delay-optimized video traffic routing in software-defined interdatacenter networks. IEEE Trans. Multimed 18(5), 865–878 (2016)
Nan, X., He, Y., Guan, L.: Optimal resource allocation for multimedia cloud based on queuing model. In: Multimedia Signal Processing (MMSP), 2011 IEEE 13th International Workshop on, pp. 1–6, IEEE (2011)
Wen, H., Hai-ying, Z., Chuang, L., Yang, Y.: Effective load balancing for cloud-based multimedia system. In: Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference on, vol. 1, pp. 165–168, IEEE (2011)
Nan, X., He, Y., Guan, L.: Optimal resource allocation for multimedia cloud in priority service scheme. In: Circuits and Systems (ISCAS), 2012 IEEE International Symposium on, pp. 1111–1114, IEEE (2012)
Nan, X., He, Y., Guan, L.: Queueing model based resource optimization for multimedia cloud. J. Vis. Commun. Image Represent. 25(5), 928–942 (2014)
Weingerrtner, R., Brerscher, G.B., Westphall, C.B.: Cloud resource management: a survey on forecasting and profiling models. J. Netw. Comput. Appl. 47, 99–106 (2015)
Yazir, Y.O., Matthews, C., Farahbod, R., Neville, S., Guitouni, A., Ganti, S., Coady, Y.: Dynamic resource allocation in computing clouds using distributed multiple criteria decision analysis. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on, pp. 91–98, IEEE (2010)
Mareschal, B.: Aide à la décision multicritère: développements récents des méthodes promethee. Cahiers Cent. Rech. Opér. 29(3–4), 175–214 (1987)
Wu, Y., Zhang, Z., Wu, C., Guo, C., Li, Z., Lau, F.C.M.: Orchestrating bulk data transfers across geo-distributed datacenters. IEEE Trans. Cloud Comput. PP(99), 1–1 (2017)
Tang, J., Tay, W.P., Wen, Y.: Dynamic request redirection and elastic service scaling in cloud-centric media networks. IEEE Trans. Multimed. 16(5), 1434–1445 (2014)
Gao, G., Wen, Y., Zhang, W., Hu, H.: Cost-efficient and QOS-aware content management in media cloud: implementation and evaluation. In: IEEE International Conference on Communications (2015)
Wenqiang Gong, J.Y., Chen, Z.: Optimal routing and resource allocation for multimedia cloud computing. In: Heterogeneous Networking for Quality, Reliability, Security and Robustness (Qshine),2014 10th International Conference on, pp. 249–254, IEEE (2014)
Gong, W., Chen, Z., Yan, J., Qianjun, S.: An optimal VM resource allocation for near-client-datacenter for multimedia cloud. In: Ubiquitous and Future Networks (ICUFN), 2014 Sixth International Conf on, pp. 249–254, IEEE (2014)
Bhardwaj, S., Jain, L., Jain, S.: Cloud computing: a study of infrastructure as a service (IAAS). Int. J. Eng. Inf. Technol. 2(1), 60–63 (2010)
Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M. et al.: B4: experience with a globally-deployed software defined wan. In: ACM SIGCOMM Computer Communication Review, vol. 43, pp. 3–14, ACM (2013)
Torkestani, J.A.: A distributed resource discovery algorithm for p2p grids. J. Netw. Comput. Appl. 35(6), 2028–2036 (2012)
Ramaswamy, R., Weng, N., Wolf, T.: Characterizing network processing delay. In: Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, vol. 3, pp. 1629–1634, IEEE (2004)
Padhye, J., Widmer, J.: TCP friendly rate control (TFRC): protocol specification (2003)
Yoo, M., Qiao, C., Dixit, S.: Qos performance of optical burst switching in ip-over-WDM networks. Sel. Areas Commun. IEEE J. 18(10), 2062–2071 (2000)
Mooney, P., Winstanley, A.: An evolutionary algorithm for multicriteria path optimization problems. Int. J. Geogr. Inf. Sci. 20(4), 401–423 (2006)
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows—Theory, Algorithms and Applications (2015)
Sahni, S., Rao, N., Ranka, S., Li, Y., Jung, E.-S., Kamath, N.: Bandwidth scheduling and path computation algorithms for connection-oriented networks. In: Networking, 2007. ICN’07. Sixth International Conference on, pp. 47–47, IEEE (2007)
Amazon ec2 instances pricing. https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/ (2015)
Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in hybrid IAAS clouds for deadline constrained workloads. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on, pp. 228–235, IEEE (2010)
Reh, F.J.: Pareto’s principle-the 80–20 rule. Bus. Credit N Y Col. MD- 107(7), 76 (2005)
Broido, A., Hyun, Y., Gao, R. et al.: Their share: diversity and disparity in IP traffic. In: International Workshop on Passive and Active Network Measurement, pp. 113–125, Springer (2004)
Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Berlin (2012)
Amazon, E.: Amazon elastic compute cloud (amazon ec2). Amazon Elastic Compute Cloud (Amazon EC2) (2010)
Appenzeller, G., Keslassy, I., McKeown, N.: Sizing Router Buffers, vol. 34. ACM, New York (2004)
Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M.: B4-experience with a globally-deployed software defined wan. Acm Sigcomm Comput. Commun. Rev. 43(4), 3–14 (2013)
Goudreau, M.W., Giles, C.L.: Routing in random multistage interconnections networks: comparing exhaustive search, greedy and neural network approaches. Int. J. Neural Syst. 3(02), 125–142 (1992)
Demers, A., Keshav, S., Shenker, S.: Analysis and simulation of a fair queueing algorithm. In: ACM SIGCOMM Computer Communication Review, vol. 19, pp. 1–12, ACM (1989)
Branco, R.M.: Software lingo 6.1 (2012)
Schmid, U., Blieberger, J.: Some investigations on fcfs scheduling in hard real time applications. J. Comput. Syst. Sci. 45(3), 493–512 (1992)
Zheng, Z., Wang, R., Zhong, H., Zhang, X.: An approach for cloud resource scheduling based on parallel genetic algorithm. In: Computer Research and Development (ICCRD), 2011 3rd International Conference on, vol. 2, pp. 444–447, IEEE (2011)
Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)
Acknowledgements
We thank anonymous reviewers for their valuable feedback and comments.
Funding
The research was funded by National Natural Science Foundation of China (Grant nos. 61631016 and 61472389).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by T. Plagemann.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gong, W., Yan, J., Nan, X. et al. Joint optimization of routing and VM resource allocation for multimedia cloud. Multimedia Systems 25, 355–369 (2019). https://doi.org/10.1007/s00530-019-00611-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-019-00611-1