Abstract
This work presents a high-performance approach for 3D lung segmentation tasks in computer tomography images using a new intelligent machine learning algorithm called Floor of Log(FoL). The Support Vector Machine was used to learn the better parameter of the FoL algorithm using the parenchyma and its border as labels. Sensitivity, Matthews Correlation Coefficient (MCC), Hausdorff Distance (HD), Dice, Accuracy (ACC), and Jaccard were used to evaluate the proposed algorithm. The FoL was compared with recent 3D region growing, 3D Adaptive Crisp Active Contour, 3D OsiriX toolbox, and Level-set algorithm based on the coherent propagation method algorithms. The FoL algorithm achieves good results with approximately 19 s in the most significant result in an exam with 430 slices and presents similarity indexes achieving HD 3.5, DICE 83.63, and Jaccard 99.73 and qualitative indexes achieving Sensitivity 83.87, MCC 83.08, and ACC 99.62. The proposed approach of this work showed a simple and powerful algorithm to segment lung in computer tomography images of the chest region by combining similar textures, highlighting the lung structure. The FoL was presented as a new supervised clustering algorithm which can be trained to achieve better results and attached to other approaches as Convolutional Deep Neural Networks applications.












Similar content being viewed by others
References
Alves, S.A., Rebouças, E.S., Oliveira, S.F., Braga, A.M., Rebouças Filho, P.P.: Lung diseases classification by analysis of lung tissue densities. IEEE Latin Am. Trans. (2018)
Chatterjee, R., Maitra, T., Islam, S.H., Hassan, M.M., Alamri, A., Fortino, G.: A novel machine learning based feature selection for motor imagery eeg signal classification in internet of medical things environment. Fut. Gen. Comput. Syst. 98, 419–434 (2019)
Chouhan, V., Singh, S.K., Khamparia, A., Gupta, D., Tiwari, P., Moreira, C., Damaševičius, R., De Albuquerque, V.H.C.: A novel transfer learning based approach for pneumonia detection in chest X-ray images. Appl. Sci. 10(2), 559 (2020)
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)
Fang, R., Gupta, A., Huang, J., Sanelli, P.: Tender: tensor non-local deconvolution enabled radiation reduction in ct perfusion. Neurocomputing 229, 13–22 (2017)
Félix, J.H.d.S.: Metodos de contornos ativos hilbert 2d na segmentação de imagens dos pulmões em tomografia computadorizada do tórax. Ph.D. thesis, Universidade Federal do Ceará, Fortaleza, CE (2011)
Filho, P.P.R., Barros, A.C.d.S., Ramalho, G.L.B., Pereira, C.R., Papa, J.P., de Albuquerque, V.H.C., Tavares, J.M.R.S.: Automated recognition of lung diseases in ct images based on the optimum-path forest classifier. Neural Comput. Appl. (2017). 10.1007/s00521-017-3048-y
Filho, P.P.R., de S. Rebouças, E., Marinho, L.B., Sarmento, R.M., Tavares, J.M.R., de Albuquerque, V.H.C.: Analysis of human tissue densities: A new approach to extract features from medical images. Pattern Recogn. Lett. (2017). http://dx.doi.org/10.1016/j.patrec.2017.02.005
Gumaei, A., Hassan, M.M., Hassan, M.R., Alelaiwi, A., Fortino, G.: A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 7, 36266–36273 (2019)
Evolutionary algorithms for automatic lung disease detection: Gupta, N., Gupta, D., Khanna, A., Rebouças Filho, P.P., de Albuquerque, V.H.C. Measurement 140, 590–608 (2019)
Hajimani, E., Ruano, M., Ruano, A.: An intelligent support system for automatic detection of cerebral vascular accidents from brain ct images. Comput. Methods Prog. Biomed. 146, 109–123 (2017)
Han, G., Liu, X., Zhang, H., Zheng, G.W., Soomro, N.Q., Wang, M., Liu, W.: Hybrid resampling and multi-feature fusion for automatic recognition of cavity imaging sign in lung ct. Fut. Gen. Comput. Syst. 99, 558–570 (2019)
Hassan, M.M., Alam, M.G.R., Uddin, M.Z., Huda, S., Almogren, A., Fortino, G.: Human emotion recognition using deep belief network architecture. Inform. Fus. 51, 10–18 (2019)
Hausdorff, F.: Bemerkung über den inhalt von punktmengen. Math. Ann. 75(3), 428–433 (1914)
Hossain, M.S.: Cloud-supported cyber-physical localization framework for patients monitoring. IEEE Syst. J. 11(1), 118–127 (2015)
Hossain, M.S., Muhammad, G.: Emotion recognition using deep learning approach from audio-visual emotional big data. Inform. Fus. 49, 69–78 (2019)
Hossain, M.S., Muhammad, G., Alamri, A.: Smart healthcare monitoring: a voice pathology detection paradigm for smart cities. Multimed. Syst. 25(5), 565–575 (2019)
Hunter-Smith, D., Alexandra, R., Spychal, R., Michael, P.: 3D volumetric analysis and haptic modeling for preoperative planning in breast reconstruction. Anaplastology 4(138), 1173–2161 (2015)
Maier, O., Menze, B.H., von der Gablentz, J., Häni, L., Heinrich, M.P., Liebrand, M., Winzeck, S., Basit, A., Bentley, P., Chen, L., et al.: Isles 2015—a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)
Medeiros, A., Peixoto, S., Barros, C., Albuquerque, V., Rebouças, P.P.: Uma nova abordagem para a segmentação de pulmões utilizando o método de contorno ativo não paramétrico optimum path snakes em imagens de tomografia computadorizada. In: Workshop de Informática Médica, vol. 17 (2017)
Nithila, E.E., Kumar, S.: Segmentation of lung from ct using various active contour models. Biomed. Signal Process. Control 47, 57–62 (2019)
Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision and Image Processing., Proceedings of the 12th IAPR International Conference on, vol. 1, pp. 582–585. IEEE (1994)
Peixoto, S., Pedrosa, P., Kumar, A., Albuquerque, V.: Automatic classification of pulmonary diseases using a structural co-occurrence matrix. Neural Computing and Applications (2018). https://doi.org/10.1007/s00521-018-3736-2
Peixoto, S.A., Vasconcelos, F.F., Guimarães, M.T., Medeiros, A.G., Rego, P.A., Neto, A.V.L., de Albuquerque, V.H.C., Rebouças Filho, P.P.: A high-efficiency energy and storage approach for iot applications of facial recognition. Image Vis. Comput, 103899 (2020)
Qian, X., Wang, J., Guo, S., Li, Q.: An active contour model for medical image segmentation with application to brain ct image. Med. Phys. 40(2), (2013)
Ramalho, G.L.B., Ferreira, D.S., Filho, P.P.R., de Medeiros, F.N.S.: Rotation-invariant feature extraction using a structural co-occurrence matrix. Measurement 94, 406–415 (2016). https://doi.org/10.1016/j.measurement.2016.08.012
Ramalho, G.L.B., Rebouças Filho, P.P., Medeiros, F.A.N.S.d., Cortez, P.C.: Lung disease detection using feature extraction and extreme learning machine. Revista Brasileira de Engenharia Biomedica 30, 207–214 (2014)
Rebouças, P.P., de S. Rebouças, E., Marinho, L.B., Sarmento, R.M., Tavares, J.M.R., de Albuquerque, V.H.C.: Analysis of human tissue densities: A new approach to extract features from medical images. Pattern Recogn. Lett. 94, 211–218 (2017). https://doi.org/10.1016/j.patrec.2017.02.005
Rebouças Filho, P.P., Cortez, P.C., da Silva Barros, A.C., Albuquerque, V.H.C., Tavares, J.M.R.: Novel and powerful 3d adaptive crisp active contour method applied in the segmentation of ct lung images. Med. Image Anal. 35, 503–516 (2017)
Rebouças Filho, P.P., da Silva Barros, A.C., Almeida, J.S., Rodrigues, J., de Albuquerque, V.H.C.: A new effective and powerful medical image segmentation algorithm based on optimum path snakes. Appl. Soft Comput. 76, 649–670 (2019)
Rodrigues, M.B., Da Nóbrega, R.V.M., Alves, S.S.A., Rebouças Filho, P.P., Duarte, J.B.F., Sangaiah, A.K., De Albuquerque, V.H.C.: Health of things algorithms for malignancy level classification of lung nodules. IEEE Access 618, 592–601 (2018)
Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 815–823 (2015)
Selvanambi, R., Natarajan, J., Karuppiah, M., Islam, S.H., Hassan, M.M., Fortino, G.: Lung cancer prediction using higher-order recurrent neural network based on glowworm swarm optimization. Neural Comput. Appl. 32(9), 4373–4386 (2020)
Setio, A.A.A., Traverso, A., De Bel, T., Berens, M.S., van den Bogaard, C., Cerello, P., Chen, H., Dou, Q., Fantacci, M.E., Geurts, B., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)
Shakibapour, E., Cunha, A., Aresta, G., Mendonça, A.M., Campilho, A.: An unsupervised metaheuristic search approach for segmentation and volume measurement of pulmonary nodules in lung ct scans. Expert Syst. Appl. 119, 415–428 (2019)
Shakir, H., Khan, T.M.R., Rasheed, H.: 3-D segmentation of lung nodules using hybrid level sets. Comput. Biol. Med. 96, 214–226 (2018)
Skourt, B.A., El Hassani, A., Majda, A.: Lung ct image segmentation using deep neural networks. Proc. Comput. Sci. 127, 109–113 (2018)
Sodhro, A.H., Fortino, G., Pirbhulal, S., Lodro, M.M., Shah, M.A.: Energy-efficiency in wireless body sensor networks. Netw. Fut. Arch. Technol. Implement. p. 339 (2017)
Sodhro, A.H., Li, Y., Shah, M.A.: Green and friendly media transmission algorithms for wireless body sensor networks. Multimed. Tools Appl. 76, 20001–20025 (2016)
Sodhro, A.H., Luo, Z., Sodhro, G.H., Muzamal, M., Rodrigues, J.J., de Albuquerque, V.H.C.: Artificial intelligence based qos optimization for multimedia communication in iov systems. Fut. Gen. Computer Syst. 95, 667–680 (2019)
Sodhro, A.H., Pirbhulal, S., de Albuquerque, V.H.C.: Artificial intelligence-driven mechanism for edge computing-based industrial applications. IEEE Trans. Ind. Inform. 15(7), 4235–4243 (2019)
Sodhro, A.H., Pirbhulal, S., Qaraqe, M., Lohano, S., Sodhro, G.H., Junejo, N.U.R., Luo, Z.: Power control algorithms for media transmission in remote healthcare systems. IEEE Access 6, 42384–42393 (2018)
Souza, J.W., Alves, S.S., Rebouças, E.d.S., Almeida, J.S., Rebouças Filho, P.P.: A new approach to diagnose parkinson’s disease using a structural cooccurrence matrix for a similarity analysis. Computat. Intell. Neurosci. 2018 (2018)
Uddin, M.Z., Hassan, M.M., Almogren, A., Alamri, A., Alrubaian, M., Fortino, G.: Facial expression recognition utilizing local direction-based robust features and deep belief network. IEEE Access 5, 4525–4536 (2017)
Vapnik, V.N., Vapnik, V.: Statistical learning theory, vol. 1. Wiley, New York (1998)
Wang, C., Frimmel, H., Smedby, Ö.: Level set based vessel segmentation accelerated with periodic monotonic speed function. In: Medical Imaging 2011: Image Processing, vol. 7962, p. 79621M. International Society for Optics and Photonics (2011)
Wang, C., Frimmel, H., Smedby, Ö.: Fast level-set based image segmentation using coherent propagation. Med. Phys. 41(7), (2014)
Wang, E.K., Chen, C.M., Hassan, M.M., Almogren, A.: A deep learning based medical image segmentation technique in internet-of-medical-things domain. Fut. Gen. Comput. Syst. 108, 135–144 (2020)
Yang, X., Zhang, T., Xu, C., Yan, S., Hossain, M.S., Ghoneim, A.: Deep relative attributes. IEEE Trans. Multimed. 18(9), 1832–1842 (2016)
Zhang, S., Zhao, Y., Bai, P.: Object localization improved grabcut for lung parenchyma segmentation. Procedia Comput. Sci. 131, 1311–1317 (2018)
Acknowledgements
The authors are grateful to King Saud University, Riyadh, Saudi Arabia for funding this work through Researchers Supporting Project number RSP-2020/18. This study was also supported in part by the CAPES - Finance Code 001, and by the CNPq via Grants Nos. 311973/2018-3 and 430274/2018-1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Peixoto, S.A., Medeiros, A.G., Hassan, M.M. et al. Floor of log: a novel intelligent algorithm for 3D lung segmentation in computer tomography images. Multimedia Systems 28, 1151–1163 (2022). https://doi.org/10.1007/s00530-020-00698-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-020-00698-x