Abstract
In recent years, machine learning has become a hot research method in various fields and has been applied to every aspect of our life, providing an intelligent solution to problems that could not be solved or difficult to be solved before. Machine learning is driven by data. It learns from a part of the input data and builds a model. The model is used to predict and analyze another part of the data to get the results people want. With the continuous advancement of ocean observation technology, the amount of ocean data and data dimensions are rising sharply. The use of traditional data analysis methods to analyze massive amounts of data has revealed many shortcomings. The development of machine learning has solved these shortcomings. Nowadays, the use of machine learning technology to analyze and apply ocean data becomes the focus of scientific research. This method has important practical and long-term significance for protecting the ocean environment, predicting ocean elements, exploring the unknown, and responding to extreme weather. This paper focuses on the analysis of the state of the art and specific practices of machine learning in ocean data, review the application examples of machine learning in various fields such as ocean sound source identification and positioning, ocean element prediction, ocean biodiversity monitoring, and deep-sea resource monitoring. We also point out some constraints that still exist in the research and put forward the future development direction and application prospects.





Similar content being viewed by others
References
Jin, X., Wah, B.W., Cheng, X., Wang, Y.: Significance and challenges of big data research. Big Data Res. 2(2), 59–64 (2015)
Shuai, L., Ge, C., Ying-Jie, L., Feng-Lin, T.: Research and analysis on marine big data applied technology. Periodical of Ocean University of China (2020)
Riser, S.C., Freeland, H.J., Roemmich, D., Wijffels, S., Troisi, A., Belbéoch, M., Gilbert, D., Xu, J., Pouliquen, S., Thresher, A., et al.: Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6(2), 145–153 (2016)
Shi, R., Gan, Y., Wang, Y.: Evaluating scalability bottlenecks by workload extrapolation. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 333–347 (2018). https://doi.org/10.1109/MASCOTS.2018.00039
Deo, R.C., Şahin, M.: Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern australia. Atmos. Res. 153, 512–525 (2015)
Rasouli, K., Hsieh, W.W., Cannon, A.J.: Daily streamflow forecasting by machine learning methods with weather and climate inputs. J. Hydrol. 414, 284–293 (2012)
Kim, Y.H., Im, J., Ha, H.K., Choi, J.K., Ha, S.: Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GISci. Remote Sens. 51(2), 158–174 (2014)
Rosso, I., Mazloff, M.R., Talley, L.D., Purkey, S.G., Freeman, N.M., Maze, G.: Water mass and biogeochemical variability in the kerguelen sector of the southern ocean: A machine learning approach for a mixing hot spot. J. Geophys. Res. Oceans 125(3), e2019JC015877 (2020)
Mosavi, A., Ozturk, P., Chau, K.W.: Flood prediction using machine learning models. Lit. Rev. Water 10(11), 1536 (2018)
Sun, M., Yu, F.U., Chongjing, L., Jiang, X.: Deep learning application in marine big data mining. Sci. Technol. Rev. 36(17), 83–90 (2018). http://www.kjdb.org/CN/10.3981/j.issn.1000-7857.2018.17.010
Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017)
Asefa, T., Kemblowski, M., McKee, M., Khalil, A.: Multi-time scale stream flow predictions: the support vector machines approach. J. Hydrol. 318(1–4), 7–16 (2006)
Guilford, T., Meade, J., Willis, J., Phillips, R.A., Boyle, D., Roberts, S., Collett, M., Freeman, R., Perrins, C.: Migration and stopover in a small pelagic seabird, the manx shearwater Puffinus puffinus: insights from machine learning. Proc. R. Soc. B Biol. Sci. 276(1660), 1215–1223 (2009)
Krinitskiy, M.: Application of machine learning methods to the solar disk state detection by all-sky images over the ocean. Oceanology 57(2), 265–269 (2017)
Deo, M.: Artificial neural networks in coastal and ocean engineering. Indian J. Geo-Mar. Sci. 39(4), 589–596 (2010)
Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)
Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2020)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Baggeroer, A.B., Kuperman, W.A., Mikhalevsky, P.N.: An overview of matched field methods in ocean acoustics. IEEE J. Ocean. Eng. 18(4), 401–424 (1993)
Baggeroer A.B., Kuperman W.A.: Matched field processing in ocean acoustics. In: Moura J.M.F., Lourtie I.M.G. (eds.) Acoustic Signal Processing for Ocean Exploration. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol 388. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1604-6_8
Niu, H., Reeves, E., Gerstoft, P.: Source localization in an ocean waveguide using supervised machine learning. J. Acoust. Soc. Am. 142(3), 1176–1188 (2017)
Choi, J., Choo, Y., Lee, K.: Acoustic classification of surface and underwater vessels in the ocean using supervised machine learning. Sensors 19(16), 3492 (2019)
Steinberg, B.Z., Beran, M.J., Chin, S.H., Howard Jr., J.H.: A neural network approach to source localization. J. Acoust. Soc. Am. 90(4), 2081–2090 (1991)
Caiti, A., Parisini, T.: Mapping ocean sediments by RBF networks. IEEE J. Ocean. Eng. 19(4), 577–582 (1994)
Niu, H., Ozanich, E., Gerstoft, P.: Ship localization in Santa Barbara channel using machine learning classifiers. J. Acoust. Soc. Am. 142(5), EL455–EL460 (2017)
Van Komen, D.F., Neilsen, T.B., Howarth, K., Knobles, D.P., Dahl, P.H.: Seabed and range estimation of impulsive time series using a convolutional neural network. J. Acoust. Soc. Am. 147(5), EL403–EL408 (2020)
Cane, M.A., Clement, A.C., Kaplan, A., Kushnir, Y., Pozdnyakov, D., Seager, R., Zebiak, S.E., Murtugudde, R.: Twentieth-century sea surface temperature trends. Science 275(5302), 957–960 (1997)
Castro, S.L., Wick, G.A., Steele, M.: Validation of satellite sea surface temperature analyses in the Beaufort Sea using UpTempO buoys. Remote Sens. Environ. 187, 458–475 (2016)
Chaidez, V., Dreano, D., Agusti, S., Duarte, C.M., Hoteit, I.: Decadal trends in red sea maximum surface temperature. Sci. Rep. 7(1), 1–8 (2017)
Xiao, C., Chen, N., Hu, C., Wang, K., Gong, J., Chen, Z.: Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sens. Environ. 233, 111358 (2019)
Xiao, C., Chen, N., Hu, C., Wang, K., Xu, Z., Cai, Y., Xu, L., Chen, Z., Gong, J.: A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ. Model. Softw. 120, 104502 (2019)
Lins, I.D., Araujo, M., das Chagas Moura, M., Silva, M.A., Droguett, E.L.: Prediction of sea surface temperature in the tropical Atlantic by support vector machines. Comput. Stat. Data Anal. 61, 187–198 (2013)
Olah, C.: Understanding LSTM Networks, August 2015. http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Savitha, R., Al Mamun, A., et al.: Regional ocean wave height prediction using sequential learning neural networks. Ocean Eng. 129, 605–612 (2017)
Group, T.W.: The wam model—a third generation ocean wave prediction model. J. Phys. Oceanogr. 18(12), 1775–1810 (1988)
Booij, N., Ris, R.C., Holthuijsen, L.H.: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Oceans 104(C4), 7649–7666 (1999)
Tolman, H.L., Chalikov, D.: Source terms in a third-generation wind wave model. J. Phys. Oceanogr. 26(11), 2497–2518 (1996)
Makarynskyy, O.: Improving wave predictions with artificial neural networks. Ocean Eng. 31(5–6), 709–724 (2004)
Agrawal, J., Deo, M.: On-line wave prediction. Mar. Struct. 15(1), 57–74 (2002)
Jain, P., Deo, M.: Artificial intelligence tools to forecast ocean waves in real time. Open Ocean Eng. J. 1, 13–20 (2008)
James, S.C., Zhang, Y., O’Donncha, F.: A machine learning framework to forecast wave conditions. Coast. Eng. 137, 1–10 (2018)
Rao, S., Mandal, S.: Hindcasting of storm waves using neural networks. Ocean Eng. 32(5–6), 667–684 (2005)
Mahjoobi, J., Mosabbeb, E.A.: Prediction of significant wave height using regressive support vector machines. Ocean Eng. 36(5), 339–347 (2009)
Quan, J., Feng, H., Yong-Zeng, Y.: Prediction of the significant wave height based on the support vector machine. Adv. Mar. Sci. 37(2), 199–209 (2019)
Alexandre, E., Cuadra, L., Nieto-Borge, J., Candil-Garcia, G., Del Pino, M., Salcedo-Sanz, S.: A hybrid genetic algorithm-extreme learning machine approach for accurate significant wave height reconstruction. Ocean Model. 92, 115–123 (2015)
Salcedo-Sanz, S., Borge, J.N., Carro-Calvo, L., Cuadra, L., Hessner, K., Alexandre, E.: Significant wave height estimation using SVR algorithms and shadowing information from simulated and real measured X-band radar images of the sea surface. Ocean Eng. 101, 244–253 (2015)
Durán-Rosal, A., Hervás-Martínez, C., Tallón-Ballesteros, A., Martínez-Estudillo, A., Salcedo-Sanz, S.: Massive missing data reconstruction in ocean buoys with evolutionary product unit neural networks. Ocean Eng. 117, 292–301 (2016)
Franz, K., Roscher, R., Milioto, A., Wenzel, S., Kusche, J.: Ocean eddy identification and tracking using neural networks. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 6887–6890. IEEE (2018)
Bai, X., Wang, C., Li, C.: A streampath-based RCNN approach to ocean eddy detection. IEEE Access 7, 106336–106345 (2019)
Lguensat, R., Sun, M., Fablet, R., Tandeo, P., Mason, E., Chen, G.: Eddynet: A deep neural network for pixel-wise classification of oceanic eddies. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 1764–1767. IEEE (2018)
Bolton, T., Zanna, L.: Applications of deep learning to ocean data inference and subgrid parameterization. J. Adv. Model. Earth Syst. 11(1), 376–399 (2019)
May, R.M.: Conceptual aspects of the quantification of the extent of biological diversity. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 345(1311), 13–20 (1994)
Ormond, R.: Marine biodiversity: causes and consequences. J. Mar. Biol. Assoc. U. K. 76(1), 151–152 (1996)
Wei, C.L., Rowe, G.T., Escobar-Briones, E., Boetius, A., Soltwedel, T., Caley, M.J., Soliman, Y., Huettmann, F., Qu, F., Yu, Z., et al.: Global patterns and predictions of seafloor biomass using random forests. PloS One 5(12), e15323 (2010)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognit. Neurosci. 3(1), 71–86 (1991)
Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (cat. no. 98th8468), pp. 41–48. IEEE (1999)
Huang, P.X.: Hierarchical classification system with reject option for live fish recognition. In: Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data, pp. 141–159. Springer (2016)
Siddiqui, S.A., Salman, A., Malik, M.I., Shafait, F., Mian, A., Shortis, M.R., Harvey, E.S.: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci. 75(1), 374–389 (2018)
Reus, G., Möller, T., Jäger, J., Schultz, S.T., Kruschel, C., Hasenauer, J., Wolff, V., Fricke-Neuderth, K.: Looking for seagrass: deep learning for visual coverage estimation. In: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), pp. 1–6. IEEE (2018)
Glotin, H., Spong, P., Symonds, H., Roger, V., Balestriero, R., Ferrari, M., Poupard, M., Towers, J., Veirs, S., Marxer, R., et al.: Deep learning for ethoacoustical mapping: application to a single cachalot long term recording on joint observatories in vancouver island. J. Acoust. Soc. Am. 144(3), 1776–1777 (2018)
Bermant, P.C., Bronstein, M.M., Wood, R.J., Gero, S., Gruber, D.F.: Deep machine learning techniques for the detection and classification of sperm whale bioacoustics. Sci. Rep. 9(1), 1–10 (2019)
Al-Barazanchi, H., Verma, A., Wang, S.X.: Intelligent plankton image classification with deep learning. Int. J. Comput. Vis. Robot. 8(6), 561–571 (2018)
Hari, V.N., Kalyan, B., Chitre, M., Ganesan, V.: Spatial modeling of deep-sea ferromanganese nodules with limited data using neural networks. IEEE J. Ocean. Eng. 43(4), 997–1014 (2017)
Jie, W.L., Kalyan, B., Chitre, M., Vishnu, H.: Polymetallic nodules abundance estimation using sidescan sonar: a quantitative approach using artificial neural network. In: OCEANS 2017-Aberdeen, pp. 1–6. IEEE (2017)
Jiang, G.Q., Xu, J., Wei, J.: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models. Geophys. Res. Lett. 45(8), 3706–3716 (2018)
Hashemi, M.R., Spaulding, M.L., Shaw, A., Farhadi, H., Lewis, M.: An efficient artificial intelligence model for prediction of tropical storm surge. Nat. Hazards 82(1), 471–491 (2016)
Zhang, C., Durgan, S.D., Lagomasino, D.: Modeling risk of mangroves to tropical cyclones: a case study of hurricane IRMA. Estuar. Coast. Shelf Sci. 224, 108–116 (2019)
Khlongkhoi, P., Chayantrakom, K., Kanbua, W.: Application of a deep learning technique to the problem of oil spreading in the Gulf of Thailand. Adv. Differ. Equ. 2019(1), 306 (2019)
Topouzelis, K., Psyllos, A.: Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS J. Photogramm. Remote Sens. 68, 135–143 (2012)
Xu, L., Li, J., Brenning, A.: A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery. Remote Sens. Environ. 141, 14–23 (2014)
Brekke, C., Solberg, A.H.: Classifiers and confidence estimation for oil spill detection in ENVISAT ASAR images. IEEE Geosci. Remote Sens. Lett. 5(1), 65–69 (2008)
Grasso, I., Archer, S.D., Burnell, C., Tupper, B., Rauschenberg, C., Kanwit, K., Record, N.R.: The hunt for red tides: deep learning algorithm forecasts shellfish toxicity at site scales in coastal maine. Ecosphere 10(12), e02960 (2019)
Bak, S.H., Hwang, D.H., Kim, H.M., Kim, B.K., Enkgjargal, U., Oh, S.Y., Yoon, H.J.: A study on red tide detection technique by using multi-layer perceptron. Int. J. Grid Distrib. Comput. 11(9), 93–102 (2018)
Fdez-Riverola, F., Corchado, J.M.: Fsfrt: forecasting system for red tides. a hybrid autonomous ai model. Appl. Artif. Intell. 17(10), 955–982 (2003)
Sala, E., Mayorga, J., Costello, C., Kroodsma, D., Palomares, M.L., Pauly, D., Sumaila, U.R., Zeller, D.: The economics of fishing the high seas. Sci. Adv. 4(6), 2504 (2018)
Fernandes, J.A., Irigoien, X., Goikoetxea, N., Lozano, J.A., Inza, I., Pérez, A., Bode, A.: Fish recruitment prediction, using robust supervised classification methods. Ecol. Model. 221(2), 338–352 (2010)
Stamoulis, K.A., Delevaux, J.M., Williams, I.D., Poti, M., Lecky, J., Costa, B., Kendall, M.S., Pittman, S.J., Donovan, M.K., Wedding, L.M., et al.: Seascape models reveal places to focus coastal fisheries management. Ecol. Appl. 28(4), 910–925 (2018)
de Souza, E.N., Boerder, K., Matwin, S., Worm, B.: Improving fishing pattern detection from satellite AIS using data mining and machine learning. PloS One 11(7), e0158248 (2016)
Ning, J., Huang, T., Diao, B., et al.: A fine grained grid-based maritime traffic density algorithm for mass ship trajectory data. Comput. Eng. Sci. 37(12), 2242–2249 (2015)
Kim, D., Park, M.S., Park, Y.J., Kim, W.: Geostationary ocean color imager (GOCI) marine fog detection in combination with Himawari-8 based on the decision tree. Remote Sens. 12(1), 149 (2020)
Tang, J., Deng, C., Huang, G.B., Zhao, B.: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185 (2014)
Khan, B., Khan, F., Veitch, B., Yang, M.: An operational risk analysis tool to analyze marine transportation in arctic waters. Reliabil. Eng. Syst. Saf. 169, 485–502 (2018)
Trucco, P., Cagno, E., Ruggeri, F., Grande, O.: A bayesian belief network modelling of organisational factors in risk analysis: a case study in maritime transportation. Reliabil. Eng. Syst. Saf. 93(6), 845–856 (2008)
Wen, M., Chen, X., Li, Q., Basar, E., Wu, Y.C., Zhang, W.: Index modulation aided subcarrier mapping for dual-hop OFDM relaying. IEEE Trans. Commun. 67(9), 6012–6024 (2019)
Wen, M., Zheng, B., Kim, K.J., Di Renzo, M., Tsiftsis, T.A., Chen, K.C., Al-Dhahir, N.: A survey on spatial modulation in emerging wireless systems: Research progresses and applications. IEEE J. Sel. Areas Commun. 37(9), 1949–1972 (2019)
Wen, M., Li, Q., Basar, E., Zhang, W.: Generalized multiple-mode OFDM with index modulation. IEEE Trans. Wirel. Commun. 17(10), 6531–6543 (2018)
Wen, M., Basar, E., Li, Q., Zheng, B., Zhang, M.: Multiple-mode orthogonal frequency division multiplexing with index modulation. IEEE Trans. Commun. 65(9), 3892–3906 (2017)
Wen, M., Ye, B., Basar, E., Li, Q., Ji, F.: Enhanced orthogonal frequency division multiplexing with index modulation. IEEE Trans. Wirel. Commun. 16(7), 4786–4801 (2017)
Li, Y., Zhang, Y., Li, W., Jiang, T.: Marine wireless big data: efficient transmission, related applications, and challenges. IEEE Wirel. Commun. 25(1), 19–25 (2018)
Park, S., Byun, J., Shin, K.S., Jo, O.: Ocean current prediction based on machine learning for deciding handover priority in underwater wireless sensor networks. In: 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 505–509. IEEE (2020)
Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., SA\(\ddot{{\rm I}}\)GHI, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011). https://doi.org/10.3389/fnins.2011.00073
Yang, S., Deng, B., Wang, J., Li, H., Lu, M., Che, Y., Wei, X., Loparo, K.A.: Scalable digital neuromorphic architecture for large-scale biophysically meaningful neural network with multi-compartment neurons. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 148–162 (2020). https://doi.org/10.1109/TNNLS.2019.2899936
Delbrück, T., Linares-Barranco, B., Culurciello, E., Posch, C.: Activity-driven, event-based vision sensors. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 2426–2429 (2010). https://doi.org/10.1109/ISCAS.2010.5537149
D’Alelio, D., Rampone, S., Cusano, L.M., Morfino, V., Russo, L., Sanseverino, N., Cloern, J.E., Lomas, M.W.: Machine learning identifies a strong association between warming and reduced primary productivity in an oligotrophic ocean gyre. Sci. Rep. 10(1), 1–12 (2020)
Su, H., Li, W., Yan, X.H.: Retrieving temperature anomaly in the global subsurface and deeper ocean from satellite observations. J. Geophys. Res. Oceans 123(1), 399–410 (2018)
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant no. 61902203, Key Research and Development Plan—Major Scientific and Technological Innovation Projects of ShanDong Province (2019JZZY020101).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lou, R., Lv, Z., Dang, S. et al. Application of machine learning in ocean data. Multimedia Systems 29, 1815–1824 (2023). https://doi.org/10.1007/s00530-020-00733-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-020-00733-x