Skip to main content
Log in

Application of machine learning in ocean data

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In recent years, machine learning has become a hot research method in various fields and has been applied to every aspect of our life, providing an intelligent solution to problems that could not be solved or difficult to be solved before. Machine learning is driven by data. It learns from a part of the input data and builds a model. The model is used to predict and analyze another part of the data to get the results people want. With the continuous advancement of ocean observation technology, the amount of ocean data and data dimensions are rising sharply. The use of traditional data analysis methods to analyze massive amounts of data has revealed many shortcomings. The development of machine learning has solved these shortcomings. Nowadays, the use of machine learning technology to analyze and apply ocean data becomes the focus of scientific research. This method has important practical and long-term significance for protecting the ocean environment, predicting ocean elements, exploring the unknown, and responding to extreme weather. This paper focuses on the analysis of the state of the art and specific practices of machine learning in ocean data, review the application examples of machine learning in various fields such as ocean sound source identification and positioning, ocean element prediction, ocean biodiversity monitoring, and deep-sea resource monitoring. We also point out some constraints that still exist in the research and put forward the future development direction and application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jin, X., Wah, B.W., Cheng, X., Wang, Y.: Significance and challenges of big data research. Big Data Res. 2(2), 59–64 (2015)

    Google Scholar 

  2. Shuai, L., Ge, C., Ying-Jie, L., Feng-Lin, T.: Research and analysis on marine big data applied technology. Periodical of Ocean University of China (2020)

  3. Riser, S.C., Freeland, H.J., Roemmich, D., Wijffels, S., Troisi, A., Belbéoch, M., Gilbert, D., Xu, J., Pouliquen, S., Thresher, A., et al.: Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6(2), 145–153 (2016)

    Google Scholar 

  4. Shi, R., Gan, Y., Wang, Y.: Evaluating scalability bottlenecks by workload extrapolation. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 333–347 (2018). https://doi.org/10.1109/MASCOTS.2018.00039

  5. Deo, R.C., Şahin, M.: Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern australia. Atmos. Res. 153, 512–525 (2015)

    Google Scholar 

  6. Rasouli, K., Hsieh, W.W., Cannon, A.J.: Daily streamflow forecasting by machine learning methods with weather and climate inputs. J. Hydrol. 414, 284–293 (2012)

    Google Scholar 

  7. Kim, Y.H., Im, J., Ha, H.K., Choi, J.K., Ha, S.: Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GISci. Remote Sens. 51(2), 158–174 (2014)

    Google Scholar 

  8. Rosso, I., Mazloff, M.R., Talley, L.D., Purkey, S.G., Freeman, N.M., Maze, G.: Water mass and biogeochemical variability in the kerguelen sector of the southern ocean: A machine learning approach for a mixing hot spot. J. Geophys. Res. Oceans 125(3), e2019JC015877 (2020)

    Google Scholar 

  9. Mosavi, A., Ozturk, P., Chau, K.W.: Flood prediction using machine learning models. Lit. Rev. Water 10(11), 1536 (2018)

    Google Scholar 

  10. Sun, M., Yu, F.U., Chongjing, L., Jiang, X.: Deep learning application in marine big data mining. Sci. Technol. Rev. 36(17), 83–90 (2018). http://www.kjdb.org/CN/10.3981/j.issn.1000-7857.2018.17.010

    Google Scholar 

  11. Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017)

    Google Scholar 

  12. Asefa, T., Kemblowski, M., McKee, M., Khalil, A.: Multi-time scale stream flow predictions: the support vector machines approach. J. Hydrol. 318(1–4), 7–16 (2006)

    Google Scholar 

  13. Guilford, T., Meade, J., Willis, J., Phillips, R.A., Boyle, D., Roberts, S., Collett, M., Freeman, R., Perrins, C.: Migration and stopover in a small pelagic seabird, the manx shearwater Puffinus puffinus: insights from machine learning. Proc. R. Soc. B Biol. Sci. 276(1660), 1215–1223 (2009)

    Google Scholar 

  14. Krinitskiy, M.: Application of machine learning methods to the solar disk state detection by all-sky images over the ocean. Oceanology 57(2), 265–269 (2017)

    Google Scholar 

  15. Deo, M.: Artificial neural networks in coastal and ocean engineering. Indian J. Geo-Mar. Sci. 39(4), 589–596 (2010)

    Google Scholar 

  16. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2020)

    MATH  Google Scholar 

  18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    MATH  Google Scholar 

  19. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Baggeroer, A.B., Kuperman, W.A., Mikhalevsky, P.N.: An overview of matched field methods in ocean acoustics. IEEE J. Ocean. Eng. 18(4), 401–424 (1993)

    Google Scholar 

  21. Baggeroer A.B., Kuperman W.A.: Matched field processing in ocean acoustics. In: Moura J.M.F., Lourtie I.M.G. (eds.) Acoustic Signal Processing for Ocean Exploration. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol 388. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1604-6_8

  22. Niu, H., Reeves, E., Gerstoft, P.: Source localization in an ocean waveguide using supervised machine learning. J. Acoust. Soc. Am. 142(3), 1176–1188 (2017)

    Google Scholar 

  23. Choi, J., Choo, Y., Lee, K.: Acoustic classification of surface and underwater vessels in the ocean using supervised machine learning. Sensors 19(16), 3492 (2019)

    Google Scholar 

  24. Steinberg, B.Z., Beran, M.J., Chin, S.H., Howard Jr., J.H.: A neural network approach to source localization. J. Acoust. Soc. Am. 90(4), 2081–2090 (1991)

    Google Scholar 

  25. Caiti, A., Parisini, T.: Mapping ocean sediments by RBF networks. IEEE J. Ocean. Eng. 19(4), 577–582 (1994)

    Google Scholar 

  26. Niu, H., Ozanich, E., Gerstoft, P.: Ship localization in Santa Barbara channel using machine learning classifiers. J. Acoust. Soc. Am. 142(5), EL455–EL460 (2017)

    Google Scholar 

  27. Van Komen, D.F., Neilsen, T.B., Howarth, K., Knobles, D.P., Dahl, P.H.: Seabed and range estimation of impulsive time series using a convolutional neural network. J. Acoust. Soc. Am. 147(5), EL403–EL408 (2020)

    Google Scholar 

  28. Cane, M.A., Clement, A.C., Kaplan, A., Kushnir, Y., Pozdnyakov, D., Seager, R., Zebiak, S.E., Murtugudde, R.: Twentieth-century sea surface temperature trends. Science 275(5302), 957–960 (1997)

    Google Scholar 

  29. Castro, S.L., Wick, G.A., Steele, M.: Validation of satellite sea surface temperature analyses in the Beaufort Sea using UpTempO buoys. Remote Sens. Environ. 187, 458–475 (2016)

    Google Scholar 

  30. Chaidez, V., Dreano, D., Agusti, S., Duarte, C.M., Hoteit, I.: Decadal trends in red sea maximum surface temperature. Sci. Rep. 7(1), 1–8 (2017)

    Google Scholar 

  31. Xiao, C., Chen, N., Hu, C., Wang, K., Gong, J., Chen, Z.: Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sens. Environ. 233, 111358 (2019)

    Google Scholar 

  32. Xiao, C., Chen, N., Hu, C., Wang, K., Xu, Z., Cai, Y., Xu, L., Chen, Z., Gong, J.: A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ. Model. Softw. 120, 104502 (2019)

    Google Scholar 

  33. Lins, I.D., Araujo, M., das Chagas Moura, M., Silva, M.A., Droguett, E.L.: Prediction of sea surface temperature in the tropical Atlantic by support vector machines. Comput. Stat. Data Anal. 61, 187–198 (2013)

  34. Olah, C.: Understanding LSTM Networks, August 2015. http://colah.github.io/posts/2015-08-Understanding-LSTMs/

  35. Savitha, R., Al Mamun, A., et al.: Regional ocean wave height prediction using sequential learning neural networks. Ocean Eng. 129, 605–612 (2017)

    Google Scholar 

  36. Group, T.W.: The wam model—a third generation ocean wave prediction model. J. Phys. Oceanogr. 18(12), 1775–1810 (1988)

    Google Scholar 

  37. Booij, N., Ris, R.C., Holthuijsen, L.H.: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Oceans 104(C4), 7649–7666 (1999)

    Google Scholar 

  38. Tolman, H.L., Chalikov, D.: Source terms in a third-generation wind wave model. J. Phys. Oceanogr. 26(11), 2497–2518 (1996)

    Google Scholar 

  39. Makarynskyy, O.: Improving wave predictions with artificial neural networks. Ocean Eng. 31(5–6), 709–724 (2004)

    Google Scholar 

  40. Agrawal, J., Deo, M.: On-line wave prediction. Mar. Struct. 15(1), 57–74 (2002)

    Google Scholar 

  41. Jain, P., Deo, M.: Artificial intelligence tools to forecast ocean waves in real time. Open Ocean Eng. J. 1, 13–20 (2008)

    Google Scholar 

  42. James, S.C., Zhang, Y., O’Donncha, F.: A machine learning framework to forecast wave conditions. Coast. Eng. 137, 1–10 (2018)

    Google Scholar 

  43. Rao, S., Mandal, S.: Hindcasting of storm waves using neural networks. Ocean Eng. 32(5–6), 667–684 (2005)

    Google Scholar 

  44. Mahjoobi, J., Mosabbeb, E.A.: Prediction of significant wave height using regressive support vector machines. Ocean Eng. 36(5), 339–347 (2009)

    Google Scholar 

  45. Quan, J., Feng, H., Yong-Zeng, Y.: Prediction of the significant wave height based on the support vector machine. Adv. Mar. Sci. 37(2), 199–209 (2019)

    Google Scholar 

  46. Alexandre, E., Cuadra, L., Nieto-Borge, J., Candil-Garcia, G., Del Pino, M., Salcedo-Sanz, S.: A hybrid genetic algorithm-extreme learning machine approach for accurate significant wave height reconstruction. Ocean Model. 92, 115–123 (2015)

    Google Scholar 

  47. Salcedo-Sanz, S., Borge, J.N., Carro-Calvo, L., Cuadra, L., Hessner, K., Alexandre, E.: Significant wave height estimation using SVR algorithms and shadowing information from simulated and real measured X-band radar images of the sea surface. Ocean Eng. 101, 244–253 (2015)

    Google Scholar 

  48. Durán-Rosal, A., Hervás-Martínez, C., Tallón-Ballesteros, A., Martínez-Estudillo, A., Salcedo-Sanz, S.: Massive missing data reconstruction in ocean buoys with evolutionary product unit neural networks. Ocean Eng. 117, 292–301 (2016)

    Google Scholar 

  49. Franz, K., Roscher, R., Milioto, A., Wenzel, S., Kusche, J.: Ocean eddy identification and tracking using neural networks. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 6887–6890. IEEE (2018)

  50. Bai, X., Wang, C., Li, C.: A streampath-based RCNN approach to ocean eddy detection. IEEE Access 7, 106336–106345 (2019)

    Google Scholar 

  51. Lguensat, R., Sun, M., Fablet, R., Tandeo, P., Mason, E., Chen, G.: Eddynet: A deep neural network for pixel-wise classification of oceanic eddies. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 1764–1767. IEEE (2018)

  52. Bolton, T., Zanna, L.: Applications of deep learning to ocean data inference and subgrid parameterization. J. Adv. Model. Earth Syst. 11(1), 376–399 (2019)

    Google Scholar 

  53. May, R.M.: Conceptual aspects of the quantification of the extent of biological diversity. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 345(1311), 13–20 (1994)

    Google Scholar 

  54. Ormond, R.: Marine biodiversity: causes and consequences. J. Mar. Biol. Assoc. U. K. 76(1), 151–152 (1996)

    Google Scholar 

  55. Wei, C.L., Rowe, G.T., Escobar-Briones, E., Boetius, A., Soltwedel, T., Caley, M.J., Soliman, Y., Huettmann, F., Qu, F., Yu, Z., et al.: Global patterns and predictions of seafloor biomass using random forests. PloS One 5(12), e15323 (2010)

    Google Scholar 

  56. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognit. Neurosci. 3(1), 71–86 (1991)

    Google Scholar 

  57. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (cat. no. 98th8468), pp. 41–48. IEEE (1999)

  58. Huang, P.X.: Hierarchical classification system with reject option for live fish recognition. In: Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data, pp. 141–159. Springer (2016)

  59. Siddiqui, S.A., Salman, A., Malik, M.I., Shafait, F., Mian, A., Shortis, M.R., Harvey, E.S.: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci. 75(1), 374–389 (2018)

    Google Scholar 

  60. Reus, G., Möller, T., Jäger, J., Schultz, S.T., Kruschel, C., Hasenauer, J., Wolff, V., Fricke-Neuderth, K.: Looking for seagrass: deep learning for visual coverage estimation. In: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), pp. 1–6. IEEE (2018)

  61. Glotin, H., Spong, P., Symonds, H., Roger, V., Balestriero, R., Ferrari, M., Poupard, M., Towers, J., Veirs, S., Marxer, R., et al.: Deep learning for ethoacoustical mapping: application to a single cachalot long term recording on joint observatories in vancouver island. J. Acoust. Soc. Am. 144(3), 1776–1777 (2018)

    Google Scholar 

  62. Bermant, P.C., Bronstein, M.M., Wood, R.J., Gero, S., Gruber, D.F.: Deep machine learning techniques for the detection and classification of sperm whale bioacoustics. Sci. Rep. 9(1), 1–10 (2019)

    Google Scholar 

  63. Al-Barazanchi, H., Verma, A., Wang, S.X.: Intelligent plankton image classification with deep learning. Int. J. Comput. Vis. Robot. 8(6), 561–571 (2018)

    Google Scholar 

  64. Hari, V.N., Kalyan, B., Chitre, M., Ganesan, V.: Spatial modeling of deep-sea ferromanganese nodules with limited data using neural networks. IEEE J. Ocean. Eng. 43(4), 997–1014 (2017)

    Google Scholar 

  65. Jie, W.L., Kalyan, B., Chitre, M., Vishnu, H.: Polymetallic nodules abundance estimation using sidescan sonar: a quantitative approach using artificial neural network. In: OCEANS 2017-Aberdeen, pp. 1–6. IEEE (2017)

  66. Jiang, G.Q., Xu, J., Wei, J.: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models. Geophys. Res. Lett. 45(8), 3706–3716 (2018)

    Google Scholar 

  67. Hashemi, M.R., Spaulding, M.L., Shaw, A., Farhadi, H., Lewis, M.: An efficient artificial intelligence model for prediction of tropical storm surge. Nat. Hazards 82(1), 471–491 (2016)

    Google Scholar 

  68. Zhang, C., Durgan, S.D., Lagomasino, D.: Modeling risk of mangroves to tropical cyclones: a case study of hurricane IRMA. Estuar. Coast. Shelf Sci. 224, 108–116 (2019)

    Google Scholar 

  69. Khlongkhoi, P., Chayantrakom, K., Kanbua, W.: Application of a deep learning technique to the problem of oil spreading in the Gulf of Thailand. Adv. Differ. Equ. 2019(1), 306 (2019)

    MathSciNet  Google Scholar 

  70. Topouzelis, K., Psyllos, A.: Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS J. Photogramm. Remote Sens. 68, 135–143 (2012)

    Google Scholar 

  71. Xu, L., Li, J., Brenning, A.: A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery. Remote Sens. Environ. 141, 14–23 (2014)

    Google Scholar 

  72. Brekke, C., Solberg, A.H.: Classifiers and confidence estimation for oil spill detection in ENVISAT ASAR images. IEEE Geosci. Remote Sens. Lett. 5(1), 65–69 (2008)

    Google Scholar 

  73. Grasso, I., Archer, S.D., Burnell, C., Tupper, B., Rauschenberg, C., Kanwit, K., Record, N.R.: The hunt for red tides: deep learning algorithm forecasts shellfish toxicity at site scales in coastal maine. Ecosphere 10(12), e02960 (2019)

    Google Scholar 

  74. Bak, S.H., Hwang, D.H., Kim, H.M., Kim, B.K., Enkgjargal, U., Oh, S.Y., Yoon, H.J.: A study on red tide detection technique by using multi-layer perceptron. Int. J. Grid Distrib. Comput. 11(9), 93–102 (2018)

    Google Scholar 

  75. Fdez-Riverola, F., Corchado, J.M.: Fsfrt: forecasting system for red tides. a hybrid autonomous ai model. Appl. Artif. Intell. 17(10), 955–982 (2003)

    Google Scholar 

  76. Sala, E., Mayorga, J., Costello, C., Kroodsma, D., Palomares, M.L., Pauly, D., Sumaila, U.R., Zeller, D.: The economics of fishing the high seas. Sci. Adv. 4(6), 2504 (2018)

    Google Scholar 

  77. Fernandes, J.A., Irigoien, X., Goikoetxea, N., Lozano, J.A., Inza, I., Pérez, A., Bode, A.: Fish recruitment prediction, using robust supervised classification methods. Ecol. Model. 221(2), 338–352 (2010)

    Google Scholar 

  78. Stamoulis, K.A., Delevaux, J.M., Williams, I.D., Poti, M., Lecky, J., Costa, B., Kendall, M.S., Pittman, S.J., Donovan, M.K., Wedding, L.M., et al.: Seascape models reveal places to focus coastal fisheries management. Ecol. Appl. 28(4), 910–925 (2018)

    Google Scholar 

  79. de Souza, E.N., Boerder, K., Matwin, S., Worm, B.: Improving fishing pattern detection from satellite AIS using data mining and machine learning. PloS One 11(7), e0158248 (2016)

    Google Scholar 

  80. Ning, J., Huang, T., Diao, B., et al.: A fine grained grid-based maritime traffic density algorithm for mass ship trajectory data. Comput. Eng. Sci. 37(12), 2242–2249 (2015)

    Google Scholar 

  81. Kim, D., Park, M.S., Park, Y.J., Kim, W.: Geostationary ocean color imager (GOCI) marine fog detection in combination with Himawari-8 based on the decision tree. Remote Sens. 12(1), 149 (2020)

    Google Scholar 

  82. Tang, J., Deng, C., Huang, G.B., Zhao, B.: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185 (2014)

    Google Scholar 

  83. Khan, B., Khan, F., Veitch, B., Yang, M.: An operational risk analysis tool to analyze marine transportation in arctic waters. Reliabil. Eng. Syst. Saf. 169, 485–502 (2018)

    Google Scholar 

  84. Trucco, P., Cagno, E., Ruggeri, F., Grande, O.: A bayesian belief network modelling of organisational factors in risk analysis: a case study in maritime transportation. Reliabil. Eng. Syst. Saf. 93(6), 845–856 (2008)

    Google Scholar 

  85. Wen, M., Chen, X., Li, Q., Basar, E., Wu, Y.C., Zhang, W.: Index modulation aided subcarrier mapping for dual-hop OFDM relaying. IEEE Trans. Commun. 67(9), 6012–6024 (2019)

    Google Scholar 

  86. Wen, M., Zheng, B., Kim, K.J., Di Renzo, M., Tsiftsis, T.A., Chen, K.C., Al-Dhahir, N.: A survey on spatial modulation in emerging wireless systems: Research progresses and applications. IEEE J. Sel. Areas Commun. 37(9), 1949–1972 (2019)

    Google Scholar 

  87. Wen, M., Li, Q., Basar, E., Zhang, W.: Generalized multiple-mode OFDM with index modulation. IEEE Trans. Wirel. Commun. 17(10), 6531–6543 (2018)

    Google Scholar 

  88. Wen, M., Basar, E., Li, Q., Zheng, B., Zhang, M.: Multiple-mode orthogonal frequency division multiplexing with index modulation. IEEE Trans. Commun. 65(9), 3892–3906 (2017)

    Google Scholar 

  89. Wen, M., Ye, B., Basar, E., Li, Q., Ji, F.: Enhanced orthogonal frequency division multiplexing with index modulation. IEEE Trans. Wirel. Commun. 16(7), 4786–4801 (2017)

    Google Scholar 

  90. Li, Y., Zhang, Y., Li, W., Jiang, T.: Marine wireless big data: efficient transmission, related applications, and challenges. IEEE Wirel. Commun. 25(1), 19–25 (2018)

    Google Scholar 

  91. Park, S., Byun, J., Shin, K.S., Jo, O.: Ocean current prediction based on machine learning for deciding handover priority in underwater wireless sensor networks. In: 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 505–509. IEEE (2020)

  92. Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., SA\(\ddot{{\rm I}}\)GHI, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011). https://doi.org/10.3389/fnins.2011.00073

  93. Yang, S., Deng, B., Wang, J., Li, H., Lu, M., Che, Y., Wei, X., Loparo, K.A.: Scalable digital neuromorphic architecture for large-scale biophysically meaningful neural network with multi-compartment neurons. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 148–162 (2020). https://doi.org/10.1109/TNNLS.2019.2899936

    Article  Google Scholar 

  94. Delbrück, T., Linares-Barranco, B., Culurciello, E., Posch, C.: Activity-driven, event-based vision sensors. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 2426–2429 (2010). https://doi.org/10.1109/ISCAS.2010.5537149

  95. D’Alelio, D., Rampone, S., Cusano, L.M., Morfino, V., Russo, L., Sanseverino, N., Cloern, J.E., Lomas, M.W.: Machine learning identifies a strong association between warming and reduced primary productivity in an oligotrophic ocean gyre. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  96. Su, H., Li, W., Yan, X.H.: Retrieving temperature anomaly in the global subsurface and deeper ocean from satellite observations. J. Geophys. Res. Oceans 123(1), 399–410 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant no. 61902203, Key Research and Development Plan—Major Scientific and Technological Innovation Projects of ShanDong Province (2019JZZY020101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihan Lv.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, R., Lv, Z., Dang, S. et al. Application of machine learning in ocean data. Multimedia Systems 29, 1815–1824 (2023). https://doi.org/10.1007/s00530-020-00733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00733-x

Keywords