Skip to main content
Log in

Incremental visual tracking via sparse discriminative classifier

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination variation, etc. during the tracking process. An efficient and robust visual object tracking based on sparse discriminative classier (SDC) and principal component analysis (PCA) subspace representation is presented in this work. The PCA subspace representation modelled the appearance model of the target object and SDC separates the target object and background object very efficiently. The computational complexity is much better than the other existing methods in the literature. Both quantitative and qualitative analyses of different video sequences are done to compare the proposed tracking algorithm with the other existing tracking algorithms. The experimental results show that the proposed method outperforms the other existing tracking algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 5, 564–575 (2003)

    Article  Google Scholar 

  2. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  3. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 798–805 (2006)

  4. Wang, D., Lu, H., Chen, Y.-W.: Incremental MPCA for color object tracking. In: 2010 20th International Conference on Pattern Recognition, pp. 1751–1754 (2010)

  5. Hu, W., Li, X., Zhang, X., Shi, X., Maybank, S., Zhang, Z.: Incremental tensor subspace learning and its applications to foreground segmentation and tracking. Int. J. Comput. Vis. 91(3), 303–327 (2011)

    Article  Google Scholar 

  6. Grabner, H., Bischof, H.: On-line boosting and vision. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 260–267 (2006)

  7. Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 261–271 (2007)

    Article  Google Scholar 

  8. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 983–990 (2009)

  9. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: European Conference on Computer Vision, pp. 234–247 (2008)

  10. Avidan, S.: Support vector tracking. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I-I (2001)

  11. Tang, F., Brennan, S., Zhao, Q., Tao, H.: Co-tracking using semi-supervised support vector machines. In: 2007 IEEE 11th International Conference on Computer Vision pp. 1–8 (2007)

  12. Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: 2009 IEEE 12th International Conference on Computer Vision pp. 1436–1443 (2009)

  13. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1830–1837 (2012)

  14. Zhong, W., Lu, H., Yang, M.-H.: Robust object tracking via sparse collaborative appearance model. IEEE Trans. Image Process. 23(5), 2356–2368 (2014)

    Article  MathSciNet  Google Scholar 

  15. Jia, X., Lu, H., Yang, M.-H.: Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1822–1829 (2012)

  16. Chen, F., Wang, Q., Wang, S., Zhang, W., Xu, W.: Object tracking via appearance modeling and sparse representation. Image Vis. Comput. 29(11), 787–796 (2011)

    Article  Google Scholar 

  17. Wang, D., Lu, H., Yang, M.-H.: Object tracking with sparse prototypes. IEEE Trans. Image Process. 22(1), 314–325 (2012)

    Article  MathSciNet  Google Scholar 

  18. Lu, W., Bai, C., Kpalma, K., Ronsin, J.: Multi-object tracking using sparse representation. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2312–2316 (2013)

  19. Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and k-selection. CVPR 2011, 1313–1320 (2011)

    Google Scholar 

  20. Liwicki, S., Zafeiriou, S., Tzimiropoulos, G., Pantic, M.: Efficient online subspace learning with an indefinite kernel for visual tracking and recognition. IEEE Trans. Neural Netw. Learn. Syst. 23(10), 1624–1636 (2012)

    Article  Google Scholar 

  21. Yu, G., Zhiwei, H., Hongtao, L.: Robust incremental subspace learning for object tracking. In: International Conference on Neural Information Processing, pp. 819–828 (2009)

  22. Liu, H., Li, S., Fang, L.: Robust object tracking based on principal component analysis and local sparse representation. IEEE Trans. Instrum. Meas. 64(11), 2863–2875 (2015)

    Article  Google Scholar 

  23. Kalal, Z., Matas, J., Mikolajczyk, K.: Pn learning: Bootstrapping binary classifiers by structural constraints. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 49–56 (2010)

  24. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1269–1276 (2010)

  25. Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., Kulikowski, C.: Robust and fast collaborative tracking with two stage sparse optimization. In: European conference on computer vision, pp. 624–637 (2010)

  26. Yang, G., Hu, Z., Tang, J.: Robust visual tracking via incremental subspace learning and local sparse representation. Arab. J. Sci. Eng. 43(2), 627–636 (2018)

    Article  Google Scholar 

  27. Chen, D., Zhu, M., Wang, H.: Visual tracking based on the sparse representation of the PCA subspace. Optoelectron. Lett. 13(5), 392–396 (2018)

    Article  Google Scholar 

  28. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2018)

    Article  Google Scholar 

  29. Zhang, S., Yao, H., Sun, X., Liu, S.: Robust object tracking based on sparse representation. Vis. Commun. Image Process. 7744, 77441N (2010)

    Google Scholar 

  30. Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient l1 tracker with occlusion detection. CVPR 2011, 1257–1264 (2011)

    MATH  Google Scholar 

  31. Guo, K., Xu, X., Qiu, F., Chen, J.: A novel incremental weighted pca algorithm for visual tracking. In: 2013 IEEE International Conference on Image Processing, pp. 3914–3918 (2013)

  32. Roweis, S.T.: EM algorithms for PCA and SPCA. In: Advances in neural information processing systems pp. 626–632 (1998)

  33. Chen, D., Zhu, M., Wang, H.: Visual tracking based on the sparse representation of the PCA subspace. Optoelectron. Lett. 13(5), 392–396 (2017)

    Article  Google Scholar 

  34. Yoon, G.-J., Hwang, H.J., Yoon, S.M.: Visual object tracking using structured sparse PCA-based appearance representation and online learning. Sensors 18(10), 3513 (2018)

    Article  Google Scholar 

  35. Devi, B., Rajkumari, C., Yambem, J., Singh, K.M.: Incremental online object tracking via superpixel dimension reduction. Signal Image Video Process. 14(1), 187–194 (2020)

    Article  Google Scholar 

  36. Chan, S., Zhou, X., Chen, S.: Online classification for object tracking based on superpixel. Neurocomputing 286, 88–108 (2018)

    Article  Google Scholar 

  37. Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C., Ling, H.: Lasot: a high-quality benchmark for large-scale single object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5374–5383 (2019)

  38. Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1090–1097 (2014)

  39. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: European conference on computer vision, pp. 702–715 (2012)

  40. Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, Nottingham (2014)

  41. Fan, H., Ling, H.: Parallel tracking and verifying: a framework for real-time and high accuracy visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5486–5494(2017)

  42. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)

    Article  Google Scholar 

  43. Choi, J., Ji Chang, H., Jeong, J., Demiris, Y., Young Choi, J.: Visual tracking using attention-modulated disintegration and integration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4321–4330 (2016)

  44. Mueller, M., Smith, N., Ghanem, B.: Context-aware correlation filter tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1396–1404 (2017)

  45. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.: Staple: Complementary learners for real-time tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1401–1409 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumari Bidyalakshmi Devi.

Additional information

Communicated by X. Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, R.B., Chanu, Y.J. & Singh, K.M. Incremental visual tracking via sparse discriminative classifier. Multimedia Systems 27, 287–299 (2021). https://doi.org/10.1007/s00530-020-00748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00748-4

Keywords