Skip to main content

Advertisement

Log in

DL-CNN-based approach with image processing techniques for diagnosis of retinal diseases

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

A Correction to this article was published on 09 April 2021

This article has been updated

Abstract

Artificial intelligence has the potential to revolutionize disease diagnosis, classification, and identification. However, the implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. This study presents a diagnostic tool based on a deep-learning framework for four-class classification of ocular diseases by automatically detecting diabetic macular edema, drusen, choroidal neovascularization, and normal images in optical coherence tomography (OCT) scans of the human eye. The proposed framework utilizes OCT images of the retina and analyses using three different convolution neural network (CNN) models (five, seven, and nine layers) to identify the various retinal layers extracting useful information, observe any new deviations, and predict the multiple eye deformities. The framework utilizes OCT images of the retina, which are preprocessed and processed for noise removal, contrast enhancements, contour-based edge, and detection of retinal layer extraction. This image dataset is analyzed using three different CNN models (of five, seven, and nine layers) to identify the four ocular pathologies. Results obtained from the experimental testing confirm that our model has excellently performed with 0.965 classification accuracy, 0.960 sensitivity, and 0.986 specificities compared with the manual ophthalmological diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. Yang, X., et al.: Deep relative attributes. IEEE Trans. Multimedia 18(9), 1832–1842 (2016)

    Article  Google Scholar 

  2. Hossain, M.S., Muhammad, G., Alamri, A.: Smart healthcare monitoring: a voice pathology detection paradigm for smart cities. Multimedia Syst. 25(5), 565–575 (2019)

    Article  Google Scholar 

  3. Hossain, M.S., Amin, S.U., Muhammad, G., Sulaiman, M.: Applying deep learning for epilepsy seizure detection and brain mapping visualization. In: ACM Trans. Multimedia Comput. Commun. Appl. (ACM TOMM), vol. 15(1s) (2019)

  4. Ţălu, S.-D., Ţălu, Ş: Use of OCT imaging in the diagnosis and monitoring of age related macular degeneration, age related macular degeneration—the recent advances in basic research and clinical care, Gui-Shuang Ying. IntechOpen (2012). https://doi.org/10.5772/33410

    Article  Google Scholar 

  5. Schmidt-Erfurth, U., Klimscha, S., Waldstein, S.M., Bogunović, H.: A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye (Lond.) 31(1), 26–44 (2017). https://doi.org/10.1038/eye.2016.227

    Article  Google Scholar 

  6. Srinivasan, P.P., Kim, L.A., Mettu, P.S., Cousins, S.W., Comer, G.M., Izatt, J.A., Farsiu, S.: Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed. Opt. Express 5(10), 3568–3577 (2014). https://doi.org/10.1364/BOE.5.003568

    Article  Google Scholar 

  7. Karri, S.P., Chakraborty, D., Chatterjee, J.: Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomed. Opt. Express 8(2), 579–592 (2017). https://doi.org/10.1364/BOE.8.000579

    Article  Google Scholar 

  8. Wang, Y., Zhang, Y., Yao, Z., Zhao, R., Zhou, F.: Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images. Biomed. Opt. Express 7(12), 4928–4940 (2016). https://doi.org/10.1364/BOE.7.004928

    Article  Google Scholar 

  9. Alsaih, K., Lemaitre, G., Rastgoo, M., Massich, J., Sidibé, D., Meriaudeau, F.: Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. Biomed Eng Online. 16(1), 68 (2017). https://doi.org/10.1186/s12938-017-0352-9

    Article  Google Scholar 

  10. Choi, J.Y., Yoo, T.K., Seo, J.G., Kwak, J., Um, T.T., Rim, T.H.: Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database. PLoS ONE 12(11), e0187336 (2017). https://doi.org/10.1371/journal.pone.0187336

    Article  Google Scholar 

  11. Hussain, A., Bhuiyan, A., Luu, C.D., Theodore Smith, R., Guymer, R.H., Ishikawa, H., et al.: Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm. PLoS ONE 13(6), e0198281 (2018). https://doi.org/10.1371/journal.pone.0198281

    Article  Google Scholar 

  12. Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C., Liang, H., Baxter, S.L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M.K., Pei, J., Ting, M., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., Shi, A., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122-1131.e9 (2018). https://doi.org/10.1016/j.cell.2018.02.010

    Article  Google Scholar 

  13. Schlegl, T., Waldstein, S.M., Bogunovic, H., Endstraßer, F., Sadeghipour, A., Philip, A.M., Podkowinski, D., Gerendas, B.S., Langs, G., Schmidt-Erfurth, U.: Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology 125(4), 549–558 (2018). https://doi.org/10.1016/j.ophtha.2017.10.031

    Article  Google Scholar 

  14. Das, S., Malathy, C.: Survey on diagnosis of diseases from retinal images. J Phys Conf Ser. 1000, 012053 (2018). https://doi.org/10.1088/1742-6596/1000/1/012053

    Article  Google Scholar 

  15. Hossain, M.S., Muhammad, G.: Deep learning based pathology detection for smart connected healthcares. IEEE Netw. 34(6), 120–125 (2020)

    Article  MathSciNet  Google Scholar 

  16. Pandey, S., Solanki, A.: Music instrument recognition using deep convolutional neural networks. Int. J. Inf. Technol. 13(3), 129–149 (2019)

    Google Scholar 

  17. Rajput, R., Solanki, A.: Real-time analysis of tweets using machine learning and semantic analysis. In: International Conference on Communication and Computing Systems (ICCCS2016), Taylor and Francis, at Dronacharya College of Engineering, Gurgaon, 9–11 Sept, vol 138 issue 25, pp. 687–692 (2016).

  18. Ahuja, R., Solanki, A.: Movie recommender system using K-Means clustering and K-Nearest Neighbor. In: Accepted for Publication in Confluence-2019: 9th International Conference on Cloud Computing, Data Science & Engineering, Amity University, Noida, vol. 1231, no. 21, pp. 25–38 (2019).

  19. Tayal, A., Kose, U., Solanki, A., Nayyar, A., Saucedo, J.A.M.: Efficiency analysis for stochastic dynamic facility layout problem using meta-heuristic, data envelopment analysis and machine learning. Comput. Intell. 36(1), 172–202 (2020)

    Article  MathSciNet  Google Scholar 

  20. Singh, T., Nayyar, A., Solanki, A.: Multilingual opinion mining movie recommendation system using RNN. In: Singh, P., Pawłowski, W., Tanwar, S., Kumar, N., Rodrigues, J., Obaidat, M. (eds.) Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019). Lecture Notes in Networks and Systems, vol 121. Springer, Singapore (2020). https://doi.org/https://doi.org/10.1007/978-981-15-3369-3_44.

  21. Lemaître, G., Rastgoo, M., Massich, J., Cheung, C.Y., Wong, T.Y., Lamoureux, E., Milea, D., Mériaudeau, F., Sidibé, D.: Classification of SD-OCT volumes using local binary patterns: experimental validation for DME detection. J. Ophthalmol. 2016, 3298606 (2016). https://doi.org/10.1155/2016/3298606

    Article  Google Scholar 

  22. Tasnim, N., Hasan, M., Islam, I.: Comparisonal study of Deep Learning approaches on Retinal OCT Image (2019).

  23. Xiaoming, L., Ke, Xu., Peng, Z., Jiannan, C.: Edge detection of retinal OCT image based on complex shearlet transform. IET Image Process. 13(10), 1686–1693 (2019). https://doi.org/10.1049/iet-ipr.2018.6634

    Article  Google Scholar 

  24. Bhatt, C., Kumar, I., Vijayakumar, V., et al.: The state of the art of deep learning models in medical science and their challenges. Multimedia Syst. (2020). https://doi.org/10.1007/s00530-020-00694-1

    Article  Google Scholar 

  25. Kim, P.W.: Image super-resolution model using an improved deep learning-based facial expression analysis. Multimedia Syst. (2020). https://doi.org/10.1007/s00530-020-00705-1

    Article  Google Scholar 

  26. Nie, W., Cao, Q., Liu, A., et al.: Convolutional deep learning for 3D object retrieval. Multimedia Syst. 23, 325–332 (2017). https://doi.org/10.1007/s00530-015-0485-2

    Article  Google Scholar 

  27. Zhao, F., Chen, Y., Hou, Y., et al.: Segmentation of blood vessels using rule-based and machine-learning-based methods: a review. Multimedia Syst. 25, 109–118 (2019). https://doi.org/10.1007/s00530-017-0580-7

    Article  Google Scholar 

  28. Rajalingam, B., Al-Turjman, F., Santhoshkumar, R., et al.: Intelligent multimodal medical image fusion with deep guided filtering. Multimedia Syst. (2020). https://doi.org/10.1007/s00530-020-00706-0

    Article  Google Scholar 

  29. Xi, X., Meng, X., Yang, L., et al.: Automated segmentation of choroidal neovascularization in optical coherence tomography images using multi-scale convolutional neural networks with structure prior. Multimedia Syst. 25, 95–102 (2019). https://doi.org/10.1007/s00530-017-0582-5

    Article  Google Scholar 

  30. Baroni, M., Fortunato, P., Torre, A.: Towards quantitative analysis of retinal features in optical coherence tomography. Med. Eng. Phys. 29, 432–441 (2007). https://doi.org/10.1016/j.medengphy.2006.06.003

    Article  Google Scholar 

  31. Shaw, P.R., Manickam, S. , Burnwal, S., Kalyanakumar, V.: Study of removal of speckle noise from OCT images. 35, 313–317 (2015).

  32. Kalyanakumar, V., Manickam, S.: Performance evaluation of speckle reduction filters for optical coherence tomography images. Int J Pharm. Bio. Sci 6, B837–B845 (2015)

    Google Scholar 

  33. Saya Nandini Devi, M., Santhi, S.: Improved oct image enhancement using Clahe. In: International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278–3075, vol. 8, issue 11 (2019)

  34. Setiawan, A., Mengko, T., Santoso, O., Suksmono, A.: Color retinal image enhancement using CLAHE, pp. 1–3 (2013). https://doi.org/https://doi.org/10.1109/ICTSS.2013.6588092.

  35. Dodo, B.I., Li, Y., Liu, X., & Dodo, M.I.: Level Set Segmentation of Retinal OCT Images (2019).

  36. Pekala, M., Joshi, N., Liu, T., Bressler, N.M., DeBuc, D.C., Burlina, P.: Deep learning based retinal OCT segmentation. Comput. Biol. Med. 114, 103445 (2019). https://doi.org/10.1016/j.compbiomed.2019.103445

    Article  Google Scholar 

  37. Luo, S., Yang, J., Gao, Q., Zhou, S., Zhan, C.A.: The edge detectors suitable for retinal OCT image segmentation. J. Healthc. Eng. 2017, 1 (2017)

    Google Scholar 

  38. González-López, A., de Moura, J., Novo, J., Ortega, M., Penedo, M.G.: Robust segmentation of retinal layers in optical coherence tomography images based on a multistage active contour model. Heliyon. 5, e01271 (2019). https://doi.org/10.1016/j.heliyon.2019.e01271

    Article  Google Scholar 

  39. Somfai, G.M., Jozsef, M., Chetverikov, D., DeBuc, D.: Active contour detection for the segmentation of optical coherence tomography images of the retina. Invest. Ophthalmol. Vis. Sci. 55(13), 4793 (2014)

    Google Scholar 

  40. Perez-Cisneros, M., Cruz-Aceves, I., Avina-Cervantes, J.G., Lopez-Hernandez, J.M., Garcia-Hernandez, M.G., Torres-Cisneros, M., Estrada-Garcia, H.J., Hernandez-Aguirre, A.: Automatic image segmentation using active contours with univariate marginal distribution. Math. Probl. Eng J. (2013). https://doi.org/10.1155/2013/419018

    Article  MATH  Google Scholar 

  41. Mishra, A., Wong, A., Bizheva, K., et al.: Intra-retinal layer segmentation in optical coherence tomography images. Opt. Express 17(26), 23719–32372 (2009)

    Article  Google Scholar 

  42. Sultana, F., Sufian, A., Dutta, P. : Advancements in image classification using convolutional neural network. In: 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 122–129 (2018)

  43. Hossain, M.S., Muhammad, G.: Cloud-based collaborative media service framework for healthcare. Int. J. Distrib. Sens. Netw. 2014, 11 (2014)

    Google Scholar 

  44. Feng, L., Chen. H., Liu, Z, et al.: Deep learning-based automated detection of retinal diseases using optical coherence tomography images. Biomed. Opt. Express 10, 6204–6226 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Taif University Researchers Supporting Project (number: TURSP-2020/10), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Nayyar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayal, A., Gupta, J., Solanki, A. et al. DL-CNN-based approach with image processing techniques for diagnosis of retinal diseases. Multimedia Systems 28, 1417–1438 (2022). https://doi.org/10.1007/s00530-021-00769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00769-7

Keywords

Navigation