Skip to main content

Advertisement

Log in

Optimized generative adversarial network based breast cancer diagnosis with wavelet and texture features

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Breast cancer is defined as a deadly disease, and it is the major cause of the increased mortality rate of women. Mammography is the main method for breast cancer diagnosis. Even in this era, the early diagnosis of breast cancer using mammogram images is a complex task. Deep learning approaches have demonstrated good applicability for diverse databases. In this line, this paper intends to propose a deep learning-based breast cancer detection model with the inclusion of steps like (i) pre-processing (ii) segmentation (iii) feature extraction (iv) classification. The preprocessing is carried out via CLAHE and the median filtering model. Subsequently, the pre-processed images are segmented using Fuzzy C-means clustering (FCM). In the feature extraction process, the wavelet and texture features are extracted from the segmented image with respect to DWT and GLCM features, respectively. Finally, the extracted features are subjected to a classification process via optimized Generative Adversarial Networks (GAN) classifier. Further, the weight of GAN will be fine-tuned via a new hybrid optimization model referred to as Tunicate Adopted Moth Flame (TAMF) algorithm. This tuning process enhances the network training to determine accurate classification results. The output gets the differentiated benign and malignant types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACO:

Ant colony optimization

ANN:

Artificial neural network

BN:

Bayesian Network

CLAHE:

Contrast Limited Adaptive Histogram Equalization

DWT:

Discrete wavelet transform

FCM:

Fuzzy C-means clustering

FDR:

False Discovery Rate

FNAC:

Fine-needle aspiration cytology repository for UCI machine learning

FOA:

Fruit fly optimization algorithm

FPR:

False positive rate

GA-MOO-NN:

Genetic algorithm-based multi-objective optimization of an artificial neural network classifier

GAN:

Generative adversarial networks

GLCM:

Gray level co-occurrence matrix

IABC-EMBOT:

Intelligent artificial bee colony and enhanced monarchy butterfly optimization technique

IMC:

Information measures of correlation

LF:

Levy flight

LFOA:

FOA enhanced by Lf strategy

LSSVM:

Least square support vector machine

MCC:

Matthews correlation coefficient

MFO:

Moth flame optimization

MKL:

Multiple kernel learning

NPV:

Negative predictive value

SVM:

Support vector machines

TAMF:

Tunicate adopted moth flame

TSA:

Tunicate swarm algorithm

WOA:

Whale optimization algorithm

References

  1. Sun, D., Li, A., Tang, B.: M Wang,"Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome". Comput. Methods Programs Biomed. 161, 45–53 (2018)

    Article  Google Scholar 

  2. Peng, L., Chen, W., Zhou, W., Li, F., Zhang, J.: An immune-inspired semi-supervised algorithm for breast cancer diagnosis. Comput. Methods Programs Biomed. 134, 259–265 (2016)

    Article  Google Scholar 

  3. Liu, S., Zeng, J., Gong, H., Yang, H., Ding, X.: Quantitative analysis of breast cancer diagnosis using a probabilistic modeling approach. Comput. Biol. Med. 92, 168–175 (2018)

    Article  Google Scholar 

  4. Punitha, S., Amuthan, A., Suresh Joseph, K.: Enhanced Monarchy Butterfly Optimization Technique for effective breast cancer diagnosis. J. Med. Syst. (2019). https://doi.org/10.1007/s10916-019-1348-8

    Article  Google Scholar 

  5. Huang, H., Feng, X., Zhou, S., Jiang, J., Chen, H., Li, Y., Li, C.: A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features. BMC Bioinform. (2019). https://doi.org/10.1186/s12859-019-2771-z

    Article  Google Scholar 

  6. Ahmad, F., Isa, N.A.M., Hussain, Z., Sulaiman, S.N.: A genetic algorithm-based multi-objective optimization of an artificial neural network classifier for breast cancer diagnosis. Neural Comput. Appl. 23, 1427–1435 (2016)

    Article  Google Scholar 

  7. Fallahzadeh, O., Dehghani-Bidgoli, Z., Assarian, M.: Raman spectral feature selection using ant colony optimization for breast cancer diagnosis. Lasers Med. Sci. 33, 1799 (2018)

    Article  Google Scholar 

  8. Sayed, G.I., Darwish, A., Hassanien, A.E.: Binary whale optimization algorithm and binary moth flame optimization with clustering algorithms for clinical breast cancer diagnoses. J. Classif. 37, 66–96 (2020)

    Article  MathSciNet  Google Scholar 

  9. Feng, X., et al.: Accurate prediction of neoadjuvant chemotherapy pathological complete remission (pCR) for the four sub-types of breast cancer. IEEE Access 7, 134697–134706 (2019). https://doi.org/10.1109/ACCESS.2019.2941543

    Article  Google Scholar 

  10. Wei, D., Weinstein, S., Hsieh, M.-K., Pantalone, L., Kontos, D.: Three-dimensional whole breast segmentation in sagittal and axial breast mri with dense depth field modeling and localized self-adaptation for chest-wall line detection. IEEE Trans. Biomed. Eng. 66(6), 1567–1579 (2019). https://doi.org/10.1109/TBME.2018.2875955

    Article  Google Scholar 

  11. Wang, Y., et al.: Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound. IEEE Trans. Med. Imaging 39(4), 866–876 (2020). https://doi.org/10.1109/TMI.2019.2936500

    Article  Google Scholar 

  12. Roslidar, R., et al.: A review on recent progress in thermal imaging and deep learning approaches for breast cancer detection. IEEE Access 8, 116176–116194 (2020). https://doi.org/10.1109/ACCESS.2020.3004056

    Article  Google Scholar 

  13. Geweid, G.G.N., Abdallah, M.A.: A novel approach for breast cancer investigation and recognition using M-level set-based optimization functions. IEEE Access 7, 136343–136357 (2019)

    Article  Google Scholar 

  14. Zheng, J., Lin, D., Gao, Z., Wang, S., He, M., Fan, J.: Deep learning assisted efficient adaboost algorithm for breast cancer detection and early diagnosis. IEEE Access 8, 96946–96954 (2020)

    Article  Google Scholar 

  15. Wang, Z., et al.: Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access 7, 105146–105158 (2019). https://doi.org/10.1109/ACCESS.2019.2892795

    Article  Google Scholar 

  16. Bhowmik, M.K., Gogoi, U.R., Majumdar, G., Bhattacharjee, D., Datta, D., Ghosh, A.K.: Designing of ground-truth-annotated DBT-TU-JU breast thermogram database toward early abnormality prediction. IEEE J. Biomed. Health Inform. 22(4), 1238–1249 (2018). https://doi.org/10.1109/JBHI.2017.2740500

    Article  Google Scholar 

  17. Ma, G., Soleimani, M.: Spectral capacitively coupled electrical resistivity tomography for breast cancer detection. IEEE Access 8, 50900–50910 (2020). https://doi.org/10.1109/ACCESS.2020.2980112

    Article  Google Scholar 

  18. Li, X., Radulovic, M., Kanjer, K., Plataniotis, K.N.: Discriminative pattern mining for breast cancer histopathology image classification via fully convolutional autoencoder. IEEE Access 7, 36433–36445 (2019). https://doi.org/10.1109/ACCESS.2019.2904245

    Article  Google Scholar 

  19. Chiang, T.-C., Huang, Y.-S., Chen, R.-T., Huang, C.-S., Chang, R.-F.: Tumor detection in automated breast ultrasound using 3-D CNN and prioritized candidate aggregation. IEEE Trans. Med. Imaging 38(1), 240–249 (2019). https://doi.org/10.1109/TMI.2018.2860257

    Article  Google Scholar 

  20. Sebai, M., Wang, T., Al-Fadhli, S.A.: PartMitosis: a partially supervised deep learning framework for mitosis detection in breast cancer histopathology images. IEEE Access 8, 45133–45147 (2020). https://doi.org/10.1109/ACCESS.2020.2978754

    Article  Google Scholar 

  21. Zhang, H.: Microwave imaging for breast cancer detection: the discrimination of breast lesion morphology. IEEE Access 8, 107103–107111 (2020). https://doi.org/10.1109/ACCESS.2020.3001039

    Article  Google Scholar 

  22. Misilmani, H.M.E., Naous, T., Khatib, S.K.A., Kabalan, K.Y.: A survey on antenna designs for breast cancer detection using microwave imaging. IEEE Access 8, 102570–102594 (2020). https://doi.org/10.1109/ACCESS.2020.2999053

    Article  Google Scholar 

  23. Husaini, M.A.S.A., Habaebi, M.H., Hameed, S.A., Islam, M.R., Gunawan, T.S.: A systematic review of breast cancer detection using thermography and neural networks. IEEE Access 8, 208922–208937 (2020). https://doi.org/10.1109/ACCESS.2020.3038817

    Article  Google Scholar 

  24. Papageorgiou, E.P., Boser, B.E., Anwar, M.: Chip-scale angle-selective imager for in vivo microscopic cancer detection. IEEE Trans. Biomed. Circuits Syst. 14(1), 91–103 (2020). https://doi.org/10.1109/TBCAS.2019.2959278

    Article  Google Scholar 

  25. Chavez, T., Vohra, N., Wu, J., Bailey, K., El-Shenawee, M.: Breast cancer detection with low-dimensional ordered orthogonal projection in terahertz imaging. IEEE Trans. Terahertz Sci. Technol. 10(2), 176–189 (2020). https://doi.org/10.1109/TTHZ.2019.2962116

    Article  Google Scholar 

  26. Hendriks, G.A.G.M., Chen, C., Hansen, H.H.G., de Korte, C.L.: 3-D Single breath-hold shear strain estimation for improved breast lesion detection and classification in automated volumetric ultrasound scanners. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(9), 1590–1599 (2018). https://doi.org/10.1109/TUFFC.2018.2849687

    Article  Google Scholar 

  27. Tang, X., Xiao, Q., Yu, K.: Breast cancer candidate gene detection through integration of subcellular localization data with protein-protein interaction networks. IEEE Trans. Nanobiosci. 19(3), 556–561 (2020). https://doi.org/10.1109/TNB.2020.2990178

    Article  Google Scholar 

  28. Ibrahim, A., Mohammed, S., Ali, H.A., Hussein, S.E.: Breast cancer segmentation from thermal images based on chaotic salp swarm algorithm. IEEE Access 8, 122121–122134 (2020). https://doi.org/10.1109/ACCESS.2020.3007336

    Article  Google Scholar 

  29. Hu, J., Soleimani, M.: Combining multiple boundary shapes in deformable EIT a potential use in breast imaging. IEEE Sens. Lett. 4(4), 1–4 (2020). https://doi.org/10.1109/LSENS.2020.2978289. (Art no. 5500604)

    Article  Google Scholar 

  30. Tellez, D., et al.: Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37(9), 2126–2136 (2018). https://doi.org/10.1109/TMI.2018.2820199

    Article  Google Scholar 

  31. Kuo, Y.-H., Chen, Y.-S., Huang, P.-C., Lee, G.-B.: A CMOS-based capacitive biosensor for detection of a breast cancer microRNA biomarker. IEEE Open J. Nanotechnol. 1, 157–162 (2020). https://doi.org/10.1109/OJNANO.2020.3035349

    Article  Google Scholar 

  32. Yap, M.H., et al.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2018). https://doi.org/10.1109/JBHI.2017.2731873

    Article  Google Scholar 

  33. Al-Zuhairi, D.T., Gahl, J.M., Abed, A.M., Islam, N.E.: Characterizing horn antenna signals for breast cancer detection. Can. J. Elect. Comput. Eng. 41(1), 8–16 (2018). https://doi.org/10.1109/CJECE.2017.2775160

    Article  Google Scholar 

  34. Chang, Y., Jung, C., Ke, P., Song, H., Hwang, J.: Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access 6, 11782–11792 (2018)

    Article  Google Scholar 

  35. Zhu, Y., Huang, C.: An improved median filtering algorithm for image noise reduction. In: 2012 International Conference on Solid State Devices and Materials Science, Physics Procedia, pp. 609–616 (2012)

  36. Parker, J.K., Hall, L.O.: Accelerating fuzzy-C means using an estimated subsample size. IEEE Trans. Fuzzy Syst. 22(5), 1229–1244 (2014). https://doi.org/10.1109/TFUZZ.2013.2286993

    Article  Google Scholar 

  37. Darwish, H.A., Hesham, M., Taalab, A.I., Mansour, N.M.: Close accord on DWT performance and real-time implementation for protection applications. IEEE Trans. Power Delivery 25(4), 2174–2183 (2010). https://doi.org/10.1109/TPWRD.2009.2036401

    Article  Google Scholar 

  38. Xing, Z., Jia, H.: Multilevel color image segmentation based on GLCM and improved salp swarm algorithm. IEEE Access 7, 37672–37690 (2019). https://doi.org/10.1109/ACCESS.2019.2904511

    Article  Google Scholar 

  39. Köker, R., Jin, L., Tan, F., Jiang, S.: Generative adversarial network technologies and applications in computer vision. Comput. Intell. Neurosci. 2020, 1–17 (2020)

    Google Scholar 

  40. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  41. Kaura, S., Awasthia, L.K., Sangala, A.L., Dhimanb, G.: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)

    Article  Google Scholar 

  42. Marsaline Beno, M., Valarmathi, I.R., Swamy, S.M., Rajakumar, B.R.: Threshold prediction for segmenting tumour from brain MRI scans. Int. J. Imaging Syst. Technol. 24(2), 129–137 (2014). https://doi.org/10.1002/ima.22087

    Article  Google Scholar 

  43. Tejaswini, V., Susitra, D.: Hybrid PSO-WOA for solving ORPD problem under unbalanced conditions. J. Comput. Mech. Power Syst. Control 2(2), 10–20 (2019)

    Article  Google Scholar 

  44. Gayathri Devi, K.S.: Hybrid genetic algorithm and particle swarm optimization algorithm for optimal power flow in power system. J. Comput. Mech. Power Syst. Control 2(2), 31–37 (2019)

    Article  MathSciNet  Google Scholar 

  45. Kumar, R.: Hybrid cat swarm and crow search algorithm to solve the combined economic emission dispatch model for smart grid. J. Comput. Mech. Power Syst. Control 2(3), 10–18 (2019)

    Article  Google Scholar 

  46. Nair, R.P., Kanakasabapathy, P.: Hybrid PSO-BF algorithm for economic dispatch of a power system. J. Comput. Mech. Power Syst. Control 2(4), 28–37 (2019)

    Article  Google Scholar 

  47. Rajeshkumar, G., Sujatha Therese, P.: Optimal positioning and sizing of distributed generators using hybrid MFO-WC algorithm. J. Comput. Mech. Power Syst. Control 2(4), 19–27 (2019)

    Article  Google Scholar 

  48. Dataset collected from “https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#225166295e40bd1f79d64f04b40cac57ceca9272” (Access date: 2021–02–13)

  49. Roy, R.G.: Rescheduling based congestion management method using hybrid Grey Wolf optimization-grasshopper optimization algorithm in power system. J. Comput. Mech. Power Syst. Control 2(1), 9–18 (2019)

    Article  Google Scholar 

  50. Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Comput. Sci. 54, 764–771 (2015)

    Article  Google Scholar 

  51. Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In ISMM 1, 265–276 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekta Shivhare.

Additional information

Communicated by B. Xiao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivhare, E., Saxena, V. Optimized generative adversarial network based breast cancer diagnosis with wavelet and texture features. Multimedia Systems 28, 1639–1655 (2022). https://doi.org/10.1007/s00530-022-00911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-022-00911-z

Keywords

Navigation