Skip to main content
Log in

Numerical computation based few-shot learning for intelligent sea surface temperature prediction

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In terms of SST prediction tasks by machine learning approaches, high-resolution and accurate prediction can hardly be achieved with easily accessible SST data. This is because most of the SST data is spatiotemporally discrete and sparse, meaning a small sample size since it is hard to learn the spatiotemporal correlation given the data of limited density. This paper presents a numerical computation-based few-shot learning method for intelligent SST prediction. The proposed method generates synthetic SST sequences via ROMS and merges them with SST data captured by satellites to deal with small sample size. Convolutional LSTM (Conv-LSTM) network is trained end-to-end in order to learn spatiotemporal correlation of time-varying SST and eventually obtain high-resolution and accurate SST predictions. SST data from August to December in 2011 are employed for model training, and the prediction results are compared to reliable SST reanalysis datasets in the experiment, which shows fine performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Luo, M., Fan, Z., Yu, T., et al.: Marine information management service platform: a GIS based study. J. Coast. Res. 106, 557–561 (2020)

    Article  Google Scholar 

  2. Wen, J., Yang, J., Wang, T.: Path planning for autonomous underwater vehicles under the influence of ocean currents based on a fusion heuristic algorithm. IEEE Trans. Veh. Technol. 70(9), 8529–8544 (2021)

    Article  Google Scholar 

  3. Yang, J., Wen, J., Jiang, B., et al.: Blockchain-based sharing and tamper-proof framework of big data networking. IEEE Netw. 34(4), 62–67 (2020)

    Article  Google Scholar 

  4. Xi, M., Yang, J., Wen, J., et al.: Comprehensive ocean information enabled AUV path planning via reinforcement learning. IEEE Internet Things J. (2022). https://doi.org/10.1109/JIOT.2022.3155697

    Article  Google Scholar 

  5. Xiao, C., Chen, N., Hu, C., et al.: A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ. Model. Softw. 120, 104502 (2019)

    Article  Google Scholar 

  6. Wen, J., Yang, J., Li, Y., et al.: Harmful algal bloom warning based on machine learning in maritime site monitoring. Knowl. Based Syst. 245, 108569 (2022)

    Article  Google Scholar 

  7. Yang, J., Wen, J., Wang, Y., et al.: Fog-based marine environmental information monitoring towards ocean of things. IEEE Internet Things J. 7(5), 4238–4247 (2020)

    Article  Google Scholar 

  8. Li, Y., Yang, J., Wen, J.: Entropy-based redundancy analysis and information screening. Digit. Commun. Netw. (2021). https://doi.org/10.1016/j.dcan.2021.12.001

    Article  Google Scholar 

  9. Li, Y., Chao, X.: Distance-entropy: an effective indicator for selecting informative data. Front. Plant Sci. 12, 818895 (2022)

    Article  Google Scholar 

  10. Li, Y., Chao, X., Ercisli, S.: Disturbed-entropy: a simple data quality assessment approach. ICT Express (2022). https://doi.org/10.1016/j.icte.2022.01.006

    Article  Google Scholar 

  11. Gao, Z., Jiang, Y., He, J., et al.: Bayesian maximum entropy interpolation of sea surface temperature data: a comparative assessment. Int. J. Remote Sens. 43(1), 148–166 (2021)

    Article  Google Scholar 

  12. Yang, Y., Zhang, Z., Mao, W., et al.: Radar target recognition based on few-shot learning. Multim. Syst. (2021). https://doi.org/10.1007/s00530-021-00832-3

    Article  Google Scholar 

  13. Li, Y., Yang, J.: Few-shot cotton pest recognition and terminal realization. Comput. Electron. Agric. 169, 105240 (2020)

    Article  Google Scholar 

  14. Yang, J., Guo, X., Li, Y., et al.: A survey of few-shot learning in smart agriculture: developments, applications, and challenges. Plant Methods 18(1), 1–12 (2022)

    Article  Google Scholar 

  15. Chao, X., Zhang, L.: Few-shot imbalanced classification based on data augmentation. Multim. Syst. (2021). https://doi.org/10.1007/s00530-021-00827-0

    Article  Google Scholar 

  16. Li, Y., Yang, J.: Meta-learning baselines and database for few-shot classification in agriculture. Comput. Electron. Agric. 182, 106055 (2021)

    Article  Google Scholar 

  17. Li, Y., Chao, X.: ANN-based continual classification in agriculture. Agriculture 10(5), 178 (2020)

    Article  Google Scholar 

  18. Li, Y., Chao, X.: Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods 17(1), 1–10 (2021)

    Article  MathSciNet  Google Scholar 

  19. Haidvogel, D.B., Arango, H., Budgell, W.P., et al.: Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys. 227, 3595–3624 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, A., Arango, H., Broquet, G., et al.: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems part I—system overview and formulation. Prog. Oceanogr. 91, 34–49 (2011)

    Article  Google Scholar 

  21. Yang, J., Li, A., Xiao, S., et al.: MTD-net: learning to detect deepfakes images by multi-scale texture difference. IEEE Trans. Inf. Forensics Secur. 16, 4234–4245 (2021)

    Article  Google Scholar 

  22. Li, Y., Nie, J., Chao, X.: Do we really need deep CNN for plant diseases identification? Comput. Electron. Agric. 178, 105803 (2020)

    Article  Google Scholar 

  23. Wen, J., Yang, J., Jiang, B., et al.: Big data driven marine environment information forecasting: a time series prediction network. IEEE Trans. Fuzzy Syst. 29(1), 4–18 (2021)

    Article  Google Scholar 

  24. Pravallika, M., Vasavi, S., Vighneshwar, S.: Prediction of temperature anomaly in Indian Ocean based on autoregressive long short-term memory neural network. Neural Comput. Appl. (2022). https://doi.org/10.1007/s00521-021-06878-8

    Article  Google Scholar 

  25. Mohamed, J., Wei, X., Mostafa, A.: Sea surface temperature forecasting with ensemble of stacked deep neural networks. IEEE Geosci. Remote Sens. Lett. 19, 1502605 (2022)

    Google Scholar 

  26. Zhang, Z., Pan, X., Jiang, T et al.: Monthly and quarterly sea surface temperature prediction based on gated recurrent unit neural network. J. Mar. Sci. Eng. 8(4), 249 (2020)

  27. Zuo, X., Zhou, X., Guo, D., et al.: Ocean temperature prediction based on stereo spatial and temporal 4-D convolution model. IEEE Geosci. Remote Sens. Lett. 19, 1003405 (2021)

    Google Scholar 

  28. B. Qiao, Z. Wu, Z. Tang, et al.: Sea surface temperature prediction approach based on 3D CNN and LSTM with attention mechanism. In: 23rd International Conference on Advanced Communication Technology (ICACT). IEEE, pp. 342–347 (2021)

  29. Liu, J., Yang, J., Liu, K., et al.: Improving the performance of sea surface temperature predictions using a revised method. Remote Sens. Lett. 13(2), 173–183 (2021)

    Article  Google Scholar 

  30. X. Shi, Z. Chen, H. Wang, et al.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: 29th Annual Conference on Neural Information Processing Systems (NIPS), vol. 28, p. 9 (2015)

  31. Pimentel, S., Tse, W., Xu, H., et al.: Modeling the near-surface diurnal cycle of sea surface temperature in the Mediterranean Sea. J. Geophys. Res. Oceans 124(1), 171–183 (2019)

    Article  Google Scholar 

  32. Lee, E., Noh, Y., Hirose, N.: A new method to produce sea surface temperature using satellite data assimilation into an atmosphere-ocean mixed layer coupled model. J. Atmos. Ocean. Technol. 30(12), 2926–2943 (2013)

    Article  Google Scholar 

  33. Reichstein, M., Camps-Valls, G., Stevens, B., et al.: Deep learning and process understanding for data-driven Earth system science. Nature 566(7743), 195–204 (2019)

    Article  Google Scholar 

  34. S. Korak, X. Zhao, H. Zhang, et al.: AVHRR Pathfinder version 5.3 level 3 collated (L3C) global 4km sea surface temperature for 1981–Present. [2011, 2012]. NOAA National Centers for Environmental Information. Dataset. https://doi.org/10.7289/v52j68xx

  35. Huang, B., Liu, C., Banzon, V., et al.: Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. J. Clim. 34, 2923–2939 (2020). https://doi.org/10.1175/JCLI-D-20-0166.1

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgement for the data support from the National Marine Data Center, National Science and Technology Resource Sharing Service Platform of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyi He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., He, J., Ni, T. et al. Numerical computation based few-shot learning for intelligent sea surface temperature prediction. Multimedia Systems 29, 3001–3013 (2023). https://doi.org/10.1007/s00530-022-00941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-022-00941-7

Keywords