Skip to main content
Log in

Overcoming the practical restrictions in H.266/VVC-based video communication systems by a PI bit rate controller

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In this paper, the limitations in the Versatile Video Coding (H.266/VVC)-based communication systems are overcome through a bit rate controller. The limitations include the bandwidth and the buffer size. The proposed controller is of the variable bit rate type. It controls the bit rate fluctuation and maintains the buffer fullness within the admissible boundaries. These are performed by manipulating the quantization parameter. The proportional-integral (PI) controllers are more accurate than the proportional ones. Hence, a PI scheme is employed in the design process. The encoder shows stochastic and non-linear behavior. Moreover, the analytical model of its behavior is unavailable. These challenges are tackled via dynamic programming. The control criterion is developed using the Q-learning algorithm. Experimental results show the proposed method controls the bit rate with an average error equal to 1.4%. It is worthy of noting that the proposed method satisfies the buffering constraints. The average provided quality level in the proposed method is 36.47 dB. This amount is higher than those of the conventional methods. The performance analysis shows the proposed scheme has the bit rate saving capability compared with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Garcia-Lucas, D., Cebrian-Marquez, G., Cuenca, P.: Rate-distortion/complexity analysis of HEVC, VVC and AV1 video codecs. Multimed. Tools Appl. 79(39), 29621–29638 (2020)

    Article  Google Scholar 

  2. Battista, S., Conti, M., Orcioni, S.: Methodology for modeling and comparing video codecs: HEVC, EVC, and VVC. Electronics 9(10), 1579 (2020)

    Article  Google Scholar 

  3. Bross, B.: General video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30, 1226–1240 (2019)

    Article  Google Scholar 

  4. Xiu, X., Hanhart, P., He, Y., Ye, Y., Vanam, R., Lu, T., Pu, F., Yin, P.: A Unified video codec for SDR, HDR, and 360° video applications. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1296–1310 (2019)

    Article  Google Scholar 

  5. François, E., Segall, C.A., Tourapis, A.M., Yin, P., Rusanovskyy, D.: High dynamic range video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1253–1266 (2019)

    Article  Google Scholar 

  6. Ye, Y., Boyce, J.M., Hanhart, P.: Omnidirectional 360° video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1241–1252 (2019)

    Article  Google Scholar 

  7. Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming using Function Approximators, vol. 39. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  8. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2020)

    MATH  Google Scholar 

  9. Wien, M.: High Efficiency Video Coding. Coding Tools and Specification, pp. 133–160. Springer, Berlin (2015)

    Google Scholar 

  10. Choi, H., Yoo, J., Nam, J., Sim, D., Bajić, I.V.: Pixel-wise unified rate-quantization model for multi-level rate control. IEEE J. Sel. Top. Signal Process. 7(6), 1112–1123 (2013)

    Article  Google Scholar 

  11. Lee, B., Kim, M., Nguyen, T.Q.: A frame-level rate control scheme based on texture and nontexture rate models for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 24(3), 465–479 (2013)

    Article  Google Scholar 

  12. Seo, C.-W., Moon, J.-H., Han, J.-K.: Rate control for consistent objective quality in high efficiency video coding. IEEE Trans. Image Process. 22(6), 2442–2454 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang, M., Han, Y., Wen, J.: Genetic algorithm based rate control for AV1. IEEE Signal Process. Lett. 27, 520–524 (2020)

    Article  Google Scholar 

  14. Wang, S., Ma, S., Wang, S., Zhao, D., Gao, W.: Rate-GOP based rate control for high efficiency video coding. IEEE J. Sel. Top. Signal Process. 7(6), 1101–1111 (2013)

    Article  Google Scholar 

  15. Yan, T., Ra, I.-H., Wen, H., Weng, M.-H., Zhang, Q., Che, Y.: CTU layer rate control algorithm in scene change video for free-viewpoint video. IEEE Access 8, 24549–24560 (2020)

    Article  Google Scholar 

  16. Li, B., Li, H., Li, L., Zhang, J.: Domain rate control algorithm for high efficiency video coding. IEEE Trans. Image Process. 23(9), 3841–3854 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, L., Li, B., Li, H., Chen, C.W.: Domain optimal bit allocation algorithm for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 28(1), 130–142 (2016)

    Article  Google Scholar 

  18. Mir, J., Talagala, D.S., Fernando, A., Husain, S.S.: Improved HEVC -domain rate control algorithm for HDR video. SIViP 13(3), 439–445 (2019)

    Article  Google Scholar 

  19. Li, L., Yan, N., Li, Z., Liu, S., Li, H.: Domain perceptual rate control for 360-degree video compression. IEEE J. Sel. Top. Signal Process. 14(1), 130–145 (2019)

    Article  Google Scholar 

  20. Li, L., Li, Z., Liu, S., Li, H.: Rate control for video-based point cloud compression. IEEE Trans. Image Process. 29, 6237–6250 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, M., Zhou, W., Wei, H., Zhou, X., Duan, Z.: Frame level rate control algorithm based on GOP level quality dependency for low-delay hierarchical video coding. Signal Process. Image Commun. 88, 115964 (2020)

    Article  Google Scholar 

  22. Guo, H., Zhu, C., Xu, M., Li, S.: Inter-block dependency-based CTU level rate control for HEVC. IEEE Trans. Broadcast. 66(1), 113–126 (2019)

    Article  Google Scholar 

  23. Mallikarachchi, T., Talagala, D., Kodikara Arachchi, H., Hewage, C., Fernando, A.: A decoding-complexity and rate-controlled video-coding algorithm for HEVC. Future Internet 12(7), 120 (2020)

    Article  Google Scholar 

  24. Zhao, Z., Xiong, S., Sun, W., He, X., Zhang, F.: An improved R-λ rate control model based on joint spatial-temporal domain information and HVS characteristics. Multimed. Tools Appl. 80, 345–366 (2020)

    Article  Google Scholar 

  25. Lim, W., Sim, D.: A perceptual rate control algorithm based on luminance adaptation for HEVC encoders. SIViP 14, 887–895 (2020)

    Article  Google Scholar 

  26. Zhou, M., Wei, X., Kwong, S., Jia, W., Fang, B.: Just noticeable distortion-based perceptual rate control in HEVC. IEEE Trans. Image Process. 29, 7603–7614 (2020)

    Article  MATH  Google Scholar 

  27. Zhou, M., Wei, X., Wang, S., Kwong, S., Fong, C.-K., Wong, P.H., Yuen, W.Y., Gao, W.: SSIM-based global optimization for CTU-level rate control in HEVC. IEEE Trans. Multimed. 21(8), 1921–1933 (2019)

    Article  Google Scholar 

  28. Zeng, H., Yang, A., Ngan, K.N., Wang, M.: Perceptual sensitivity-based rate control method for high efficiency video coding. Multimed. Tools Appl. 75(17), 10383–10396 (2016)

    Article  Google Scholar 

  29. Liu, D., Chen, Z., Liu, S., Wu, F.: Deep learning-based technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1267–1280 (2019)

    Article  Google Scholar 

  30. Zhu, L., Wang, G., Teng, G., Yang, Z., Zhang, L.: A Deep Learning Based Perceptual Bit Allocation Scheme on Conversational Videos for HEVC -Domain Rate Control. In: International Forum on Digital TV and Wireless Multimedia Communications 2017, pp. 515–524. Springer

  31. Sun, X., Yang, X., Wang, S., Liu, M.: Content-aware rate control scheme for HEVC based on static and dynamic saliency detection. Neurocomputing 411, 393–405 (2020)

    Article  Google Scholar 

  32. Marzuki, I., Lee, J., Sim, D.: Optimal CTU-level rate control model for HEVC based on deep convolutional features. IEEE Access 8, 165670–165682 (2020)

    Article  Google Scholar 

  33. Zhang, Z., Jing, T., Han, J., Xu, Y., Zhang, F.: A new rate control scheme for video coding based on region of interest. IEEE Access 5, 13677–13688 (2017)

    Article  Google Scholar 

  34. Gao, W., Kwong, S., Jia, Y.: Joint machine learning and game theory for rate control in high efficiency video coding. IEEE Trans. Image Process. 26(12), 6074–6089 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zupancic, I., Naccari, M., Mrak, M., Izquierdo, E.: Two-pass rate control for improved quality of experience in UHDTV delivery. IEEE J. Sel. Top. Signal Process. 11(1), 167–179 (2016)

    Article  Google Scholar 

  36. Wang, S., Rehman, A., Zeng, K., Wang, J., Wang, Z.: SSIM-motivated two-pass VBR coding for HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(10), 2189–2203 (2016)

    Article  Google Scholar 

  37. Nakhaei, A., Rezaei, M.: Scene-level two-pass video rate controller for H.265/HEVC standard. Multimed. Tools Appl. 80, 7023–7038 (2020)

    Article  Google Scholar 

  38. Fani, D., Rezaei, M.: Novel PID-fuzzy video rate controller for high-delay applications of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 28(6), 1379–1389 (2017)

    Article  Google Scholar 

  39. Shojaei, M., Rezaei, M.: FJND-based fuzzy rate control of scalable video for streaming applications. Multimed. Tools Appl. 79, 13753–13773 (2020)

    Article  Google Scholar 

  40. Yiming Li, Z.C.: Rate control for VVC JVET-K0390(ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11) (July 2018).

  41. Hyun, M.H., Lee, B., Kim, M.: A frame-level constant bit-rate control using recursive Bayesian estimation for versatile video coding. IEEE Access 8, 227255–227269 (2020)

    Article  Google Scholar 

  42. Raufmehr, F., Salehi, M.R., Abiri, E.: A frame-level MLP-based bit-rate controller for real-time video transmission using VVC standard. J. Real-Time Image Process. 18, 751–763 (2020)

    Article  Google Scholar 

  43. Carlucho, I., De Paula, M., Villar, S.A., Acosta, G.G.: Incremental Q-learning strategy for adaptive PID control of mobile robots. Expert Syst. Appl. 80, 183–199 (2017)

    Article  Google Scholar 

  44. Lin, E., Chen, Q., Qi, X.: Deep reinforcement learning for imbalanced classification. Appl. Intell. 50, 2488–2502 (2020)

    Article  Google Scholar 

  45. Padakandla, S., Prabuchandran, K., Bhatnagar, S.: Reinforcement learning algorithm for non-stationary environments. Appl. Intell. 50(11), 3590–3606 (2020)

    Article  Google Scholar 

  46. Lee, H., Kang, C., Park, Y.-I., Kim, N., Cha, S.W.: Online data-driven energy management of a hybrid electric vehicle using model-based Q-Learning. IEEE Access 8, 84444–84454 (2020)

    Article  Google Scholar 

  47. Lingam, G., Rout, R.R., Somayajulu, D.V.: Adaptive deep Q-learning model for detecting social bots and influential users in online social networks. Appl. Intell. 49(11), 3947–3964 (2019)

    Article  Google Scholar 

  48. Bossen, F.: VTM common test conditions and software reference configurations for SDR video. Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29 JVET-T2010 (Oct 2020).

  49. H.266/VVC Reference Software. https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Raufmehr.

Ethics declarations

Conflict of interest

Not Applicable.

Availability of data and material

Not Applicable.

Code availability

Not Applicable.

Additional information

Communicated by P. Shenoy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raufmehr, F., Salehi, M.R. & Abiri, E. Overcoming the practical restrictions in H.266/VVC-based video communication systems by a PI bit rate controller. Multimedia Systems 28, 1723–1739 (2022). https://doi.org/10.1007/s00530-022-00942-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-022-00942-6

Keywords

Navigation