Skip to main content
Log in

Facial age estimation based on asymmetrical label distribution

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Facial age estimation is promising for a wide range of applications including security access control, biometrics, and human–computer interaction. Current label distribution learning-based age estimation methods usually assume a prior probability distribution to handle the correlation among adjacent ages, and Gaussian distribution is the most widely used one. However, the Gaussian distribution is symmetrical, it does not conform to the diversified characteristic of age processing. In this paper, we propose an age encoding method called ALD (asymmetrical label distribution) by fusing the apparent bimodal distributions and chronological single distribution so that much more robust age label distribution can be found. Then, a lightweight multi-task learning network is designed to perform label distribution learning and regression learning for both global estimation and stagewise estimation. Unlike traditional cascade networks of label distribution learning, the parallel structure of multi-task is able to reduce the error propagation from predictive distribution to regression. Extensive experimental analyses on four benchmark datasets demonstrate the superior performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hou, P., Geng, X., Huo, Z.W., Lv, J.Q.: Semi-Supervised Adaptive Label Distribution Learning for Facial Age Estimation. In National Conference on Artificial Intelligence (2017)

  2. Zeng, X.S., Ding, C.X., Wen, Y.G., Tao, D.C.: Soft-ranking label encoding for robust facial age estimation. IEEE Access 8, 134209–134218 (2020)

    Article  Google Scholar 

  3. He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J.: Deep residual learning for image recognition. In Computer Vision and Pattern Recognition (2016)

  4. Howard, A., Zhu, M.L., Chen, B., Kalenichenko, D., Wang, W.J., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR, abs/1704.04861 (2017)

  5. Huang, S.C., Zhuang, L.: Exponential discriminant locality preserving projection for face recognition. Neurocomputing 208, 373–377 (2016)

    Article  Google Scholar 

  6. Xu, S.P., Yang, X.B., Yu, H.L., Yu, D.J., Yang, J.Y., Tsang, E.C.C.: Multi-label learning with label-specific feature reduction. Knowl. Based Syst. 104, 52–61 (2016)

    Article  Google Scholar 

  7. Rothe, R., Timofte, R., Gool, V.L.: DEX: Deep EXpectation of Apparent Age from a Single Image. In International Conference on Computer Vision (2015)

  8. Rajeev, R., Sabrina, Z., Jun, C.C., Amit, K., Azadeh, A., Vishal, M.P., Rama, C.: Unconstrained age estimation with deep convolutional neural networks. In Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 109–117 (2015)

  9. Li, S.C., Cheng, K.T.: Facial age estimation by deep residual decision making. CoRR, abs/1908.10737 (2019)

  10. Yang, T.Y., Huang, Y.H., Lin, Y.Y., Hsiu, P.C., Chuang, Y.Y.: SSR-NET: A compact soft stagewise regression network for age estimation. In International Joint Conference on Artificial Intelligence (2018)

  11. Shen, W., Guo, Y.L., Wang, Y., Zhao, K., Wang, B., Yuille, A.L.: Deep regression forests for age estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2304–2313 (2018)

  12. Niu, Z.X., Zhou, M., Wang, L., Gao, X.B., Hua, G.: Ordinal regression with multiple output cnn for age estimation. In Computer Vision and Pattern Recognition (2016)

  13. Chen, S.X., Zhang, C.J., Dong, M., Le, J.L., Rao, M.: Using Ranking-CNN for Age Estimation. In Computer Vision and Pattern Recognition (2017)

  14. Geng, X., Yin, C., Zhou, Z.H.: Facial age estimation by learning from label distributions. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2401–2412 (2013)

    Article  Google Scholar 

  15. Gao, B.B., Xing, C., Xie, C.W., Wu, J.X., Geng, X.: Deep label distribution learning with label ambiguity. IEEE Trans. Image Process. 26(6), 2825–2838 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, B.B., Zhou, H.Y., Wu, J.X., Geng, X.: Age estimation using expectation of label distribution learning. In IJCAI, pages 712–718 (2018)

  17. Pan, H.Y., Han, H., Shan, S.G., Chen, X.L.: Mean-Variance Loss for Deep Age Estimation from a Face. In Computer Vision and Pattern Recognition (2018)

  18. Akbari, A., Awais, M., Bashar, M., Kittler, J.: How does loss function affect generalization performance of deep learning? application to human age estimation. In International Conference on Machine Learning, pages 141–151. PMLR (2021)

  19. Akbari, A., Awais, M., Fatemifar, S., Khalid, S.S., Kittler, J.: A novel ground metric for optimal transport-based chronological age estimation. IEEE Transactions on Cybernetics (2021)

  20. Shen, W., Zhao, K., Guo, Y.L., Alan, L.Y.: Label distribution learning forests. Advances in neural information processing systems, 30 (2017)

  21. Xu, S.P., Ju, H.R., Shang, L., Pedrycz, W., Yang, X.B., Li, C.: Label distribution learning: a local collaborative mechanism. Int. J. Approx. Reason. 121, 59–84 (2020)

    Article  MathSciNet  Google Scholar 

  22. Akbari, A., Awais, M., Fatemifar, S., Khalid, S.S., Kittler, J.: RAgE: Robust Age Estimation Through Subject Anchoring with Consistency Regularisation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

  23. Hu, C.L., Chen, J.J., Zuo, X., Zou, H.T., Deng, X., Shu, Y.C.: Gender-specific multi-task micro-expression recognition using pyramid CGBP-TOP feature. CMES-Comput. Model. Eng. Sci. 118, 547–559 (2019)

    Google Scholar 

  24. Ranjan, R., Patel, V.M., Chellappa, R.: HyperFace: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Patt. Anal. Mach. Intell. 41, 121–135 (2019)

    Article  Google Scholar 

  25. Han, H., Jain, A.K., Shan, S.G., Chen, X.L.: Heterogeneous face attribute estimation: a deep multi-task learning approach. IEEE Trans. Patt. Anal. Mach. Intell. 40(11), 2597–2609 (2018)

    Article  Google Scholar 

  26. Zhang, Y., Yeung, D.Y.: Multi-task warped Gaussian process for personalized age estimation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2010)

  27. Zhang, H.Y., Zhang, Y., Geng, X.: Practical age estimation using deep label distribution learning. Front. Comput. Sci. 15, 153318 (2021)

    Article  Google Scholar 

  28. Huang, G., Liu, Z., Maaten, L.V.D., Weinberger, Q.K.: Densely connected convolutional networks. In Computer Vision and Pattern Recognition (2017)

  29. Zhang, C., Liu, S.C., Xu, X., Zhu, C.: C3AE : Exploring the Limits of Compact Model for Age Estimation. In Computer Vision and Pattern Recognition (2019)

  30. Liu, X.H., Zou, Y., Kuang, H.L., Ma, X.L.: Face image age estimation based on data augmentation and lightweight convolutional neural network. Symmetry 12, 146 (2020)

    Article  Google Scholar 

  31. Hu, C.L., Gao, J.B., Chen, J.J., Jiang, D.B., Shu, Y.C.: Fine-grained age estimation with multi-attention network. IEEE Access 8, 196013–196023 (2020)

    Article  Google Scholar 

  32. Jie, H., Li, S., Gang, S., Albanie, S.: Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP(99) (2017)

  33. Ricanek, K., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In International Conference on Automatic Face and Gesture Recognition (2006)

  34. Chen, B.C., Chen, C.S., Hsu, W.H.: Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Trans. Multimed. 17(6), 804–815 (2015)

    Article  Google Scholar 

  35. Zhang, Y.X., Liu, L., Li, C., Loy, C.C.: Quantifying facial age by posterior of age comparisons. In British Machine Vision Conference (2017)

  36. Gabriel, P., Andreas, L., Nicholas, T., Timothy, F.C.: Overview of research on facial ageing using the FG-NET ageing database. IET Biometr. 5(2), 37–46 (2016)

    Article  Google Scholar 

  37. Li, P.P., Hu, Y.B., He, R., Sun, Z.N.: A coupled evolutionary network for age estimation. CoRR, abs/1809.07447 (2018)

  38. Li, W.H., Lu, J.L., Feng, J.J., Xu, C.J., Zhou, J., Tian, Q.: BridgeNet: A Continuity-Aware Probabilistic Network for Age Estimation. In Computer Vision and Pattern Recognition (2019)

  39. Zhu, H.P., Zhang, Y.H., Shan, H.M., Che, L.F., Xu, X.Y., Zhang, J.P., Shi, J.B., Wang, F.Y.: Deep ordinal regression forests. arXiv: Computer Vision and Pattern Recognition (2020)

  40. Liu, H., Lu, J.W., Feng, J.J., Zhou, J.: Ordinal deep feature learning for facial age estimation. In IEEE International Conference on Automatic Face & Gesture Recognition (2017)

  41. Akbari, A., Awais, M., Feng, Z.H., Farooq, A., Kittler, J.: Distribution Cognisant loss for cross-database facial age estimation with sensitivity analysis. IEEE Trans. Patt. Anal. Mach. Intell. 44, 1869–1887 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlong Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Hu, C. & Wang, L. Facial age estimation based on asymmetrical label distribution. Multimedia Systems 29, 753–762 (2023). https://doi.org/10.1007/s00530-022-01022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-022-01022-5

Keywords

Navigation