Skip to main content

Advertisement

Log in

Attribute-aware style adaptation for person re-identification

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Person re-identification (re-ID) aims to address a unique challenge in cross-camera pedestrian retrieval, especially in the case of incomplete attribute annotation. In recent years, a robust algorithm based on a generative model has been proposed that can achieve rapid convergence by extending the training data. However, these pipelines are developed separately from re-ID learning and ignore the fine-grained extension to adapt the camera style. To solve this problem, a joint learning framework is proposed in this work to implement end-to-end optimization and ultimately achieve high-quality images and impressive performance for person re-ID. In this work, an attribute-aware style adaptation based on CamStyle, called AA-CamStyle, is designed to combine fine-grained style adaptation and discriminative person re-ID. The AA-CamStyle model integrates the critical attributes into the generative learning to smooth the differences in camera style while maintaining the fine-grained information through joint representation learning of multiple styles, including attribute-aware and camera-aware. Attribute-aware (AA) strategy is applied to recommend the transmission of appropriate attributes of each pedestrian, resulting in AA-CamStyle’s tremendous quality of translated images compared to existing models. We empirically demonstrate the effectiveness of the proposed approach on person re-ID tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. arXiv:abs/1610.02984] (2016)

  2. Köstinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2288–2295 (2012)

  3. Dong, H., Lu, P., Zhong, S., Liu, C., Ji, Y., Gong, S.: Person re-identification by enhanced local maximal occurrence representation and generalized similarity metric learning. Neurocomputing, vol. 307, pp. 25–37 (2018)

    Article  Google Scholar 

  4. Zhang, L., Xiang, T., Gong, S.: Learning a discriminative null space for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1239–1248 (2016)

  5. Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q.: Person re-identification in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3346–3355 (2017)

  6. Sun, Y., Zheng, L., Deng, W., Wang, S.: Svdnet for pedestrian retrieval. In: IEEE International Conference on Computer Vision (ICCV), pp. 3800–3808 (2017)

  7. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: Person retrieval with refined part pooling (and A strong convolutional baseline). In: European Conference on Computer Vision (ECCV), vol. 11208, pp. 501–518 (2018)

  8. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.C., Bengio, Y.: Generative adversarial networks. arXiv:abs/1406.2661] (2014)

  9. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  10. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017)

  11. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML), vol. 70, pp. 1857–1865 (2017)

  12. Choi, Y., Choi, M., Kim, M., Ha, J., Kim, S., Choo, J.: Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8789–8797 (2018)

  13. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: IEEE International Conference on Computer Vision (ICCV), pp. 3774–3782 (2017)

  14. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5157–5166 (2018)

  15. Lin, Y., Zheng, L., Zheng, Z., Wu, Y., Hu, Z., Yan, C., Yang, Y.: Improving person re-identification by attribute and identity learning. Pattern Recognit. 95, 151–161 (2019)

    Article  Google Scholar 

  16. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: A benchmark. In: IEEE International Conference on Computer Vision (ICCV), pp. 1116–1124 (2015)

  17. Su, C., Yang, F., Zhang, S., Tian, Q., Davis, L.S., Gao, W.: Multi-task learning with low rank attribute embedding for multi-camera person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1167–1181 (2018)

    Article  Google Scholar 

  18. Ge, Y., Li, Z., Zhao, H., Yin, G., Yi, S., Wang, X., Li, H.: FD-GAN: pose-guided feature distilling GAN for robust person re-identification. In: Annual Conference on Neural Information Processing Systems (NeurIPS), pp. 1230–1241 (2018)

  19. Wang, G., Lai, J., Huang, P., Xie, X.: Spatial-temporal person re-identification. In: The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), pp. 8933–8940 (2019)

  20. Chang, X., Hospedales, T.M., Xiang, T.: Multi-level factorisation net for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2109–2118 (2018)

  21. Wang, J., Zhu, X., Gong, S., Li, W.: Transferable joint attribute-identity deep learning for unsupervised person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2275–2284 (2018)

  22. Yin, Z., Zheng, W., Wu, A., Yu, H., Wan, H., Guo, X., Huang, F., Lai, J.: Adversarial attribute-image person re-identification. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1100–1106 (2018)

  23. Tay, C., Roy, S., Yap, K.: Aanet: Attribute attention network for person re-identifications. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7134–7143 (2019)

  24. Yin, J., Wu, A., Zheng, W.: Fine-grained person re-identification. Int. J. Comput. Vis. 128(6), 1654–1672 (2020)

    Article  Google Scholar 

  25. Zheng, Z., Zheng, L., Yang, Y.: Pedestrian alignment network for large-scale person re-identification. IEEE Trans. Circ. Syst. Video Technol. 29(10), 3037–3045 (2019)

    Article  Google Scholar 

  26. Zheng, Z., Yang, X., Yu, Z., Zheng, L., Yang, Y., Kautz, J.: Joint discriminative and generative learning for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2138–2147 (2019)

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 60(6), 84–90 (2017)

    Google Scholar 

  28. Wu, W., Tao, D., Li, H., Yang, Z., Cheng, J.: Deep features for person re-identification on metric learning. Pattern Recognit. 110, 107424 (2021)

    Article  Google Scholar 

  29. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Deep metric learning for person re-identification. In: International Conference on Pattern Recognition (ICPR), pp. 34–39 (2014)

  30. Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: Deep filter pairing neural network for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 152–159 (2014)

  31. He, L., Liang, J., Li, H., Sun, Z.: Deep spatial feature reconstruction for partial person re-identification: alignment-free approach. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7073–7082 (2018)

  32. Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2285–2294 (2018)

  33. Ren, C., Liang, B., Ge, P., Zhai, Y., Lei, Z.: Domain adaptive person re-identification via camera style generation and label propagation. IEEE Trans. Inf. Forensics Secur. 15, 1290–1302 (2020)

    Article  Google Scholar 

  34. Chen, G., Lu, Y., Lu, J., Zhou, J.: Deep credible metric learning for unsupervised domain adaptation person re-identification. In: European Conference on Computer Vision (ECCV), vol. 12353, pp. 643–659 (2020)

  35. Zhu, K., Guo, H., Liu, Z., Tang, M., Wang, J.: Identity-guided human semantic parsing for person re-identification. In: European Conference on Computer Vision (ECCV), vol. 12348, pp. 346–363 (2020)

  36. Zhuang, Z., Wei, L., Xie, L., Zhang, T., Zhang, H., Wu, H., Ai, H., Tian, Q.: Rethinking the distribution gap of person re-identification with camera-based batch normalization. In: European Conference on Computer Vision (ECCV), vol. 12357, pp. 140–157 (2020)

  37. Wu, D., Zheng, S., Zhang, X.S., Yuan, C., Cheng, F., Zhao, Y., Lin, Y., Zhao, Z., Jiang, Y., Huang, D.: Deep learning-based methods for person re-identification: a comprehensive review. Neurocomputing 337, 354–371 (2019)

    Article  Google Scholar 

  38. Lavi, B., Serj, M.F., Ullah, I.: Survey on deep learning techniques for person re-identification task. arXiv:abs/1807.05284] (2018)

  39. Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.H.: Deep learning for person re-identification: a survey and outlook. arXiv:abs/2001.04193] (2020)

  40. Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3652–3661 (2017)

  41. Shen, Y., Li, H., Yi, S., Chen, D., Wang, X.: Person re-identification with deep similarity-guided graph neural network. In: European Conference on Computer Vision (ECCV), vol. 11219, pp. 508–526 (2018)

  42. Liu, C., Chang, X., Shen, Y.: Unity style transfer for person re-identification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6886–6895 (2020)

  43. Zhong, Z., Zheng, L., Li, S., Yang, Y.: Generalizing a person retrieval model hetero- and homogeneously. In: European Conference on Computer Vision (ECCV), vol. 11217, pp. 176–192 (2018)

  44. Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 994–1003 (2018)

  45. Miao, J., Wu, Y., Liu, P., Ding, Y., Yang, Y.: Pose-guided feature alignment for occluded person re-identification. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 542–551 (2019)

  46. Gao, S., Wang, J., Lu, H., Liu, Z.: Pose-guided visible part matching for occluded person reid. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11741–11749 (2020)

  47. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine LearningICML, vol. 70, pp. 214–223 (2017)

  48. Huang, X., Li, Y., Poursaeed, O., Hopcroft, J.E., Belongie, S.J.: Stacked generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1866–1875 (2017)

  49. Zhang, W., Liu, Y., Dong, C., Qiao, Y.: Ranksrgan: generative adversarial networks with ranker for image super-resolution. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3096–3105 (2019)

  50. Mejjati, Y.A., Richardt, C., Tompkin, J., Cosker, D., Kim, K.I.: Unsupervised attention-guided image-to-image translation. In: Annual Conference on Neural Information Processing Systems (NeurIPS), vol. 31, pp. 3697–3707 (2018)

  51. Huang, X., Liu, M., Belongie, S.J., Kautz, J.: Multimodal unsupervised image-to-image translation. In: European Conference on Computer Vision (ECCV), vol. 11207, pp. 179–196 (2018)

  52. Kotovenko, D., Sanakoyeu, A., Ma, P., Lang, S., Ommer, B.: A content transformation block for image style transfer. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10032–10041 (2019)

  53. Shen, X., Dong, G., Zheng, Y., Lan, L., Tsang, I., Sun, Q.: Deep co-image-label hashing for multi-label image retrieval. IEEE Trans. Multimedia, vol. 24, pp. 1116–1126 (2022)

  54. Shen, X., Liu, W., Tsang, I.W., Sun, Q.-S., Ong, Y.-S.: Multilabel prediction via cross-view search. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4324–4338 (2017)

    Article  Google Scholar 

  55. Shen, X., Shen, F., Sun, Q.-S., Yang, Y., Yuan, Y.-H., Shen, H.T.: Semi-paired discrete hashing: Learning latent hash codes for semi-paired cross-view retrieval. IEEE Trans. Cybern. 47(12), 4275–4288 (2016)

    Article  Google Scholar 

  56. Cui, H., Zhu, L., Li, J., Yang, Y., Nie, L.: Scalable deep hashing for large-scale social image retrieval. IEEE Trans. Image Process. 29, 1271–1284 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhu, L., Lu, X., Cheng, Z., Li, J., Zhang, H.: Deep collaborative multi-view hashing for large-scale image search. IEEE Trans. Image Process. 29, 4643–4655 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  58. Lu, X., Zhu, L., Cheng, Z., Nie, L., Zhang, H.: Online multi-modal hashing with dynamic query-adaption. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 715–724 (2019)

  59. Liu, Z., Su, P., Wu, S., Shen, X., Chen, H., Hao, Y., Wang, M.: Motion prediction using trajectory cues. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13299–13308 (2021)

  60. Liu, Z., Qian, P., Wang, X., Zhu, L., He, Q., Ji, S.: Smart contract vulnerability detection: from pure neural network to interpretable graph feature and expert pattern fusion. arXiv preprint arXiv:2106.09282 (2021)

  61. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2017)

  62. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  63. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), pp. 13001–13008 (2020)

  64. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv:abs/1703.07737] (2017)

  65. Liu, J., Zha, Z.-J., Xie, H., Xiong, Z., Zhang, Y.: \(\text{Ca}_{3}\text{ net }\): Contextual-attentional attribute-appearance network for person re-identification. In: ACM Multimedia Conference on Multimedia Conference (MM), pp. 737–745 (2018)

  66. Zhang, J., Niu, L., Zhang, L.: Person re-identification with reinforced attribute attention selection. IEEE Trans. Image Process. 30, 603–616 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially supported by the National Natural Science Foundation of China (Nos. U1836216, 61772322, 62076153), the major fundamental research project of Shandong, China (No. ZR2019ZD03), the Taishan Scholar Project of Shandong, China (No. ts20190924), and CCF-Baidu Open Fund (Grant: CCF-BAIDU OF2022008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Our source codes and testing datasets can be obtained at https://github.com/XiaofengQu/AA-CamStyle.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Liu, L., Zhu, L. et al. Attribute-aware style adaptation for person re-identification. Multimedia Systems 29, 469–485 (2023). https://doi.org/10.1007/s00530-022-01024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-022-01024-3

Keywords