Abstract
The demand for video analysis has been rapidly increasing in the last decade. Video analysis plays a critical role in various technologies, including medical diagnosis, security surveillance, robotics, and sport. Soccer is the most popular sport in our culture, with millions of fans. Many video analysis approaches have been developed in recent years to assist and provide important information to spectators, referees, coaches, and players. Most of these approaches are aimed towards detecting and tracking players or the ball, event detection, and analysis of the game. For this purpose, various classical or deep learning-based strategies have been used. This study investigates deep learning-based techniques that have been proposed over the last few years to analyze football videos. The purpose of this study is not to compare current methodologies, but to show the most recent research in the field. This paper investigates the challenges of soccer video analysis and its application groups, e.g., player/ball detection and tracking, event detection, and game analysis. This paper also reviews the used deep learning-based methods, their performance, advantages, and disadvantages in soccer videos, and finally, concludes with future potential in the analysis of soccer videos.











Similar content being viewed by others
Data availability
The datasets analyzed during the current study are available in the following public domain resources: http://pspagnolo.jimdo.com/download/http://media.hust.edu.cn/dataset.htmhttps://www.soccer-net.org/datahttps://github.com/newsdata/SoccerDB.
References
D’Orazio, T., Leo, M.: A review of vision-based systems for soccer video analysis. Pattern Recognit. 43(8), 2911–2926 (2010). https://doi.org/10.1016/J.PATCOG.2010.03.009
Al-Ali, A., Almaadeed, S.: A review on soccer player tracking techniques based on extracted features. In: 2017 6th Int. Conf. Inf. Commun. Technol. Accessbility, ICTA 2017, vol. 2017(December), pp. 1–6 (Apr. 2018). https://doi.org/10.1109/ICTA.2017.8336015
Kamble, P.R., Keskar, A.G., Bhurchandi, K.M.: Ball tracking in sports: a survey. Artif. Intell. Rev. 52(3), 1655–1705 (2019). https://doi.org/10.1007/S10462-017-9582-2/FIGURES/10
Khan, Y.S., Pawar, S.: Video summarization: survey on event detection and summarization in soccer videos. In: IJACSA) Int. J. Adv. Comput. Sci. Appl., vol. 6(11) (2015). Accessed: 26 Feb. 2022 (Online). Available: www.ijacsa.thesai.org
Manafifard, M., Ebadi, H., Abrishami Moghaddam, H.: A survey on player tracking in soccer videos. Comput. Vis. Image Underst. 159, 19–46 (2017). https://doi.org/10.1016/J.CVIU.2017.02.002
Memmert, D., Koen, A., Lemmink, P.M., Sampaio, J.: Current approaches to tactical performance analyses in soccer using position data (2016). https://doi.org/10.1007/s40279-016-0562-5
Rehman, A., Saba, T.: Features extraction for soccer video semantic analysis: current achievements and remaining issues. Artif. Intell. Rev. 2012 413 41(3), 451–461 (2012). https://doi.org/10.1007/S10462-012-9319-1
Cuevas, C., Quilón, D., García, N.: Techniques and applications for soccer video analysis: a survey. Multimed. Tools Appl. 79(39–40), 29685–29721 (2020). https://doi.org/10.1007/S11042-020-09409-0/FIGURES/16
Cuevas, C., Martínez, R., García, N.: Detection of stationary foreground objects: a survey. Comput. Vis. Image Underst. 152, 41–57 (2016). https://doi.org/10.1016/J.CVIU.2016.07.001
Ishii, N., Kitahara, I., Kameda, Y., Ohta, Y.: 3D tracking of a soccer ball using two synchronized cameras. Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4810 LNCS, pp. 196–205 (Dec. 2007). https://doi.org/10.1007/978-3-540-77255-2_22
Scheuer, C., et al.: Generating ball trajectory in soccer video sequences. In: Phys. Educ. Sport Child. Youth with Spec. Needs Res.—Best Pract.—Situat., pp. 343–354 (2006)
Barros, R.M.L., et al.: Analysis of the distances covered by first division brazilian soccer players obtained with an automatic tracking method. J. Sports Sci. Med. 6(2), 233 (June 2007). Accessed: 17 Jan. 2022 (Online). Available: https://www.pmc/articles/PMC3786245/
Yu, X., Sen Hay, T., Yan, X., Chng, E.: A player-possession acquisition system for broadcast soccer video. IEEE Int. Conf. Multimed. Expo, ICME 2005, vol. 2005, pp. 522–525 (2005). https://doi.org/10.1109/ICME.2005.1521475
Hashimoto, S., Ozawa, S.: A system for automatic judgment of offsides in soccer games. In: 2006 IEEE Int. Conf. Multimed. Expo, ICME 2006—Proc., vol. 2006, pp. 1889–1892 (2006). https://doi.org/10.1109/ICME.2006.262924
Gerke, S., Linnemann, A., Müller, K.: Soccer player recognition using spatial constellation features and jersey number recognition. Comput. Vis. Image Underst. 159, 105–115 (2017). https://doi.org/10.1016/J.CVIU.2017.04.010
Halbinger, J., Metzler, J.: Video-based soccer ball detection in difficult situations. Commun. Comput. Inf. Sci. 464, 17–24 (2013). https://doi.org/10.1007/978-3-319-17548-5_2
Wang, X., Turetken, E., Fleuret, F., Fua, P.: Tracking interacting objects using intertwined flows. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2312–2326 (2016). https://doi.org/10.1109/TPAMI.2015.2513406
Maksai, A., Wang, X., Fua, P.: What players do with the ball: a physically constrained interaction modeling, pp. 972–981 (2016)
Giancola, S., Amine, M., Dghaily, T., Ghanem, B.: Soccernet: a scalable dataset for action spotting in soccer videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1711–1721 (2018)
Hossein-Khani, J., Soltanian-Zadeh, H., Kamarei, M., Staadt, O.: Ball detection with the aim of corner event detection in soccer video. In: Proc.—9th IEEE Int. Symp. Parallel Distrib. Process. with Appl. Work. ISPAW 2011—ICASE 2011, SGH 2011, GSDP 2011, pp. 147–152 (2011). https://doi.org/10.1109/ISPAW.2011.41
Shih, H.C.: A survey of content-aware video analysis for sports. IEEE Trans. Circuits Syst. Video Technol. 28(5), 1212–1231 (2018). https://doi.org/10.1109/TCSVT.2017.2655624
D’Orazio, T., et al.: An investigation into the feasibility of real-time soccer offside detection from a multiple camera system. IEEE Trans. Circuits Syst. Video Technol. 19(12), 1804–1818 (2009). https://doi.org/10.1109/TCSVT.2009.2026817
Manafifard, M., Ebadi, H., Moghaddam, H.A.: Multi-player detection in soccer broadcast videos using a blob-guided particle swarm optimization method. Multimed. Tools Appl. 76(10), 12251–12280 (2017). https://doi.org/10.1007/S11042-016-3625-6/TABLES/2
Ivankovic, Z., Rackovic, M., Ivkovic, M.: Automatic player position detection in basketball games. Multimed. Tools Appl. 72(3), 2741–2767 (2014). https://doi.org/10.1007/S11042-013-1580-Z/TABLES/5
Ma’ckowiak, S.M.: Segmentation of football video broadcast. INTL J. Electron. Telecommun. 59(1), 75–84 (2013). https://doi.org/10.2478/eletel-2013-0009
Turaga, P., Chellappa, R., Veeraraghavan, A.: Advances in video-based human activity analysis: challenges and approaches. Adv. Comput. 80(C), 237–290 (2010). https://doi.org/10.1016/S0065-2458(10)80007-5
Cuevas, C., García, N., Salgado, L.: A new strategy based on adaptive mixture of Gaussians for real-time moving objects segmentation. Real Time Image Process. 6811, 304–315 (2008). https://doi.org/10.1117/12.768139
Www, W., Patel, N.: International journal of emerging technology and advanced engineering motion detection based on multi frame video under surveillance system, vol. 2(1) (2012). Accessed: 16 Dec. 2021 (Online). Available: www.ijetae.com
Arce, G.R.: Nonlinear Signal Processing: A Statistical Approach. Wiley, London (2005)
Berjón, D., Cuevas, C., Morán, F., García, N.: Real-time nonparametric background subtraction with tracking-based foreground update. Pattern Recognit. 74, 156–170 (2018). https://doi.org/10.1016/J.PATCOG.2017.09.009
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995). https://doi.org/10.1109/34.400568
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1987 14 1(4), 321–331 (1988). https://doi.org/10.1007/BF00133570
Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a K-means clustering algorithm. Appl. Stat. 28(1), 100 (1979). https://doi.org/10.2307/2346830
Rao, U.M., Pati, U.C.: A novel algorithm for detection of soccer ball and player. 2015 Int. Conf. Commun. Signal Process. ICCSP 2015, 344–348 (2015). https://doi.org/10.1109/ICCSP.2015.7322903
Kia, M.: Ball automatic detection and tracking in long shot views. IJCSNS Int. J. Comput. Sci. Netw. Secur. 16(6), 1 (2016)
Yang, H., et al.: Asymmetric 3D convolutional neural networks for action recognition. Pattern Recognit. 85, 1–12 (2019). https://doi.org/10.1016/J.PATCOG.2018.07.028
Huiqun, Z., Hui, W., Xiaoling, W.: Application research of video annotation in sports video analysis. In: Proc. 2011 Int. Conf. Futur. Comput. Sci. Educ. ICFCSE 2011, pp. 62–66 (2011). https://doi.org/10.1109/ICFCSE.2011.24
Harris, C., Stephens, M.: A combined corner and edge detector
Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision (1981)
Lowe, D.G.: Object recognition from local scale-invariant features. Proc. IEEE Int. Conf. Comput. Vis. 2, 1150–1157 (1999). https://doi.org/10.1109/ICCV.1999.790410
Julier, S.J., Uhlmann, J.K.: New extension of the Kalman filter to nonlinear systems. Signal Process. Sens. Fusion Target Recogn. 3068, 182–193 (1997). https://doi.org/10.1117/12.280797
Nieto, M., Cuevas, C., Salgado, L.: Measurement-based reclustering for multiple object tracking with particle filters. In: Proc.—Int. Conf. Image Process. ICIP, pp. 4097–4100 (2009). https://doi.org/10.1109/ICIP.2009.5413709
Habtemariam, B., Tharmarasa, R., Thayaparan, T., Mallick, M., Kirubarajan, T.: A multiple-detection joint probabilistic data association filter. IEEE J. Sel. Top. Signal Process. 7(3), 461–471 (2013). https://doi.org/10.1109/JSTSP.2013.2256772
Oh, S., Russell, S., Sastry, S.: Markov chain Monte Carlo data association for multi-target tracking. IEEE Trans. Automat. Contr. 54(3), 481–497 (2009). https://doi.org/10.1109/TAC.2009.2012975
Illingworth, J., Kittler, J.: A survey of the hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988). https://doi.org/10.1016/S0734-189X(88)80033-1
Daubechies, I.: The wavelet transform, time–frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990). https://doi.org/10.1109/18.57199
Athanesious, J., Suresh, P.: Implementation and comparison of kernel and silhouette based object tracking. Int. J. Adv. Res. Comput. Eng. Technol. 2(3), 1298–1303 (2013)
Athanesious, J.J., Suresh, P.: Systematic survey on object tracking methods in video. Int. J. Adv. Res. Comput. Eng. Technol. 1(8), 242–247 (2012)
Cortes, C., Vapnik, V., Saitta, L.: Support-vector networks. Mach. Learn. 1995 203 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). https://doi.org/10.1006/JCSS.1997.1504
Broder, J.: The Fourier Transform and Mis Applications. McGraw-Hill, New York (1992)
Powell, M.J.D.: A method for minimizing a sum of squares of non-linear functions without calculating derivatives. Comput. J. 7(4), 303–307 (1965). https://doi.org/10.1093/COMJNL/7.4.303
Lee, J., Nam, D.W., Lee, J.S., Moon, S., Kim, K., Kim, H.: A study on composition of context-based soccer analysis system. Int. Conf. Adv. Commun. Technol. ICACT (2017). https://doi.org/10.23919/ICACT.2017.7890222
Rangasamy, K., As’ari, M.A., Rahmad, N.A., Ghazali, N.F., Ismail, S.: Deep learning in sport video analysis: a review. Telkomnika Telecommun. Comput. Electron. Control. 18(4), 1926–1933 (2020). https://doi.org/10.12928/TELKOMNIKA.V18I4.14730
Cioppa, A., Deliege, A., Huda, N.U., Gade, R., Van Droogenbroeck, M., Moeslund, T.B.: Multimodal and multiview distillation for real-time player detection on a football field. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 880–881 (2020)
Deliege, A., et al.: Soccernet-v2: a dataset and benchmarks for holistic understanding of broadcast soccer videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4508–4519 (2021)
Hurault, S., Ballester, C., Haro, G.: Self-supervised small soccer player detection and tracking. In: MMSports 2020—Proc. 3rd Int. Work. Multimed. Content Anal. Sport., pp. 9–18 (Nov. 2020). https://doi.org/10.1145/3422844.3423054
Kamble, P.R., Keskar, A.G., Bhurchandi, K.M.: A deep learning ball tracking system in soccer videos. Opto-Electronics Rev. 27(1), 58–69 (2019). https://doi.org/10.1016/J.OPELRE.2019.02.003
Suzuki, G., Takahashi, S., Ogawa, T., Haseyama, M.: Team tactics estimation in soccer videos based on a deep extreme learning machine and characteristics of the tactics. IEEE Access 7, 153238–153248 (2019). https://doi.org/10.1109/ACCESS.2019.2946378
Arbues-Sanguesa, A., Martin, A., Fernández, J., Ballester, C., Haro, G.: Using player’s body-orientation to model pass feasibility in soccer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 886–887 (2020)
Decroos, T., Van Haaren, J., Bransen, L., Davis, J.: Actions speak louder than goals: valuing player actions in soccer. In: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1851–1861 (July 2019). https://doi.org/10.1145/3292500.3330758
Cioppa, A., Deliege, A., Van Droogenbroeck, M.: A bottom-up approach based on semantics for the interpretation of the main camera stream in soccer games, pp. 1765–1774 (2018)
Agyeman, R., Muhammad, R., Choi, G.S.: Soccer video summarization using deep learning. In: Proc.—2nd Int. Conf. Multimed. Inf. Process. Retrieval, MIPR 2019, pp. 270–273 (Apr. 2019). https://doi.org/10.1109/MIPR.2019.00055
Sanabria, M., Precioso, S.F., Menguy, T.: A deep architecture for multimodal summarization of soccer games, pp. 16–24 (2019). https://doi.org/10.1145/3347318.3355524
Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 1 (2018). https://doi.org/10.1155/2018/7068349
Sargano, A.B., Angelov, P., Habib, Z.: A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition. Appl. Sci. 7(1), 110 (2017). https://doi.org/10.3390/APP7010110
Elboushaki, A., Hannane, R., Afdel, K., Koutti, L.: MultiD-CNN: a multi-dimensional feature learning approach based on deep convolutional networks for gesture recognition in RGB-D image sequences. Expert Syst. Appl. 139, 112829 (2020). https://doi.org/10.1016/J.ESWA.2019.112829
Meng, B., Liu, X.J., Wang, X.: Human action recognition based on quaternion spatial–temporal convolutional neural network and LSTM in RGB videos. Multimed. Tools Appl. 77(20), 26901–26918 (2018). https://doi.org/10.1007/S11042-018-5893-9/TABLES/4
Asadi-Aghbolaghi, M., et al.: A survey on deep learning based approaches for action and gesture recognition in image sequences. In: 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), pp. 476–483 (2017)
Yang, X., Molchanov, P., Kautz, J.: Multilayer and multimodal fusion of deep neural networks for video classification. In: MM 2016—Proc. 2016 ACM Multimed. Conf., pp. 978–987 (Oct. 2016). https://doi.org/10.1145/2964284.2964297
Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4694–4702 (2015)
Xu, J., Tasaka, K.: [Papers] Keep your eye on the ball: detection of kicking motions in multi-view 4K soccer videos. ITE Trans. Media Technol. Appl. 8(2), 81–88 (2020). https://doi.org/10.3169/MTA.8.81
Sverrisson, S., Grancharov, V., Pobloth, H.: Real-time tracking-by-detection in broadcast sports videos. Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11482 LNCS, pp. 399–411 (June 2019). https://doi.org/10.1007/978-3-030-20205-7_33
Theagarajan, R., Pala, F., Zhang, X., Bhanu, B.: Soccer: Who has the ball? Generating visual analytics and player statistics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1749–1757 (2018)
Hurault, S., Ballester, C., Haro, G.: Self-supervised small soccer player detection and tracking. In: MMSports 2020—Proc. 3rd Int. Work. Multimed. Content Anal. Sport., pp. 9–18 (Oct. 2020). https://doi.org/10.1145/3422844.3423054
Komorowski, J., Kurzejamski, G., Sarwas, G.: BallTrack: football ball tracking for real-time CCTV systems. In: Proc. 16th Int. Conf. Mach. Vis. Appl. MVA 2019 (May 2019). https://doi.org/10.23919/MVA.2019.8757880
Komorowski, J., Kurzejamski, G., Sarwas, G.: DeepBall: deep neural-network ball detector. In: VISIGRAPP 2019—Proc. 14th Int. Jt. Conf. Comput. Vision, Imaging Comput. Graph. Theory Appl., vol. 5, pp. 297–304 (Feb. 2019). https://doi.org/10.5220/0007348902970304
Komorowski, J., Kurzejamski, G., Sarwas, G.: FootAndBall: integrated player and ball detector. In: VISIGRAPP 2020—Proc. 15th Int. Jt. Conf. Comput. Vision, Imaging Comput. Graph. Theory Appl., vol. 5, pp. 47–56 (Dec. 2019). https://doi.org/10.5220/0008916000470056
Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup soccer using convolutional neural networks. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9776 LNAI, pp. 19–30 (2016). https://doi.org/10.1007/978-3-319-68792-6_2
Garnier, P., Gregoir, T.: Evaluating soccer player: from live camera to deep reinforcement learning. Preprint arXiv:2101.05388 (2021)
Naik, B.T., Hashmi, M.F.: YOLOv3-SORT: detection and tracking player/ball in soccer sport. J. Electron. Imaging 32(1), 11003 (2022)
Naik, B.T., Hashmi, M.F., Geem, Z.W., Bokde, N.D.: DeepPlayer-track: player and referee tracking with jersey color recognition in soccer. IEEE Access 1, 1 (2022)
Hong, Y., Ling, C., Ye, Z.: End-to-end soccer video scene and event classification with deep transfer learning. In: 2018 Int. Conf. Intell. Syst. Comput. Vision, ISCV 2018, vol. 2018(May), pp. 1–4 (May 2018). https://doi.org/10.1109/ISACV.2018.8369043
Khan, M.Z., Saleem, S., Hassan, M.A., Khan, M.U.G.: Learning deep C3D features for soccer video event detection. In: 2018 14th Int. Conf. Emerg. Technol. ICET 2018 (Jan. 2019). https://doi.org/10.1109/ICET.2018.8603644
Karimi, A., Toosi, R., Akhaee, M.A.: Soccer event detection using deep learning (Feb. 2021). Accessed: 26 Jan. 2022 (Online). Available: https://arxiv.org/abs/2102.04331v1
Andre Nergård Rongved, O., et al.: Automated event detection and classification in soccer: the potential of using multiple modalities. Mach. Learn. Knowl. Extr. 3(4), 1030–1054 (2021). https://doi.org/10.3390/MAKE3040051
Ma, S., Shao, E., Xie, X., Liu, W.: Event detection in soccer video based on self-attention. 2020 IEEE 6th Int. Conf. Comput. Commun. ICCC 2020, 1852–1856 (2020). https://doi.org/10.1109/ICCC51575.2020.9344896
Vats, K., Fani, M., Walters, P., Clausi, D.A., Zelek, J.: Event detection in coarsely annotated sports videos via parallel multi receptive field 1D convolutions
Jiang, H., Lu, Y., Xue, J.: Automatic soccer video event detection based on a deep neural network combined CNN and RNN, pp. 490–494 (Jan. 2017). https://doi.org/10.1109/ICTAI.2016.0081
Mahaseni, B., Faizal, E.R.M., Raj, R.G.: Spotting football events using two-stream convolutional neural network and dilated recurrent neural network. IEEE Access 9, 61929–61942 (2021). https://doi.org/10.1109/ACCESS.2021.3074831
Kukleva, A., Khan, M.A., Farazi, H., Behnke, S.: Utilizing temporal information in deep convolutional network for efficient soccer ball detection and tracking. In: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11531 LNAI, pp. 112–125 (July 2019). https://doi.org/10.1007/978-3-030-35699-6_9
Yu, J., Lei, A., Hu, Y.: Soccer video event detection based on deep learning. In: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11296 LNCS, pp. 377–389 (Jan. 2019). https://doi.org/10.1007/978-3-030-05716-9_31
Fakhar, B., Rashidy Kanan, H., Behrad, A.: Event detection in soccer videos using unsupervised learning of spatio-temporal features based on pooled spatial pyramid model. Multimed. Tools Appl. 78(12), 16995–17025 (2019). https://doi.org/10.1007/S11042-018-7083-1/TABLES/12
Giancola, S., Ghanem, B.: Temporally-aware feature pooling for action spotting in soccer broadcasts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2021)
Liu, G., Luo, Y., Schulte, O., Kharrat, T.: Deep soccer analytics: learning an action-value function for evaluating soccer players. Data Min. Knowl. Discov. 34(5), 1531–1559 (2020). https://doi.org/10.1007/S10618-020-00705-9/FIGURES/9
Fernández, J., Bornn, L.: SoccerMap: a deep learning architecture for visually-interpretable analysis in soccer. In: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12461 LNAI, pp. 491–506 (Oct. 2020). https://doi.org/10.1007/978-3-030-67670-4_30
Cho, H., Ryu, H., Song, M.: Pass2vec: analyzing soccer players’ passing style using deep learning. Int. J. Sport. Sci. Coach. 2021, 17479541211033078 (2021)
Rafiq, M., Rafiq, G., Agyeman, R., Il Jin, S., Choi, G.S.: Scene classification for sports video summarization using transfer learning. Sensors 20(6), 1702 (2020). https://doi.org/10.3390/S20061702
Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: Proc.—Int. Conf. Image Process. ICIP, vol. 2017(September), pp. 3645–3649 (Feb. 2018). https://doi.org/10.1109/ICIP.2017.8296962
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. (2015). Accessed: 27 Sept. 2022 (Online). Available: https://github.com/
Giancola, S., Amine, M., Dghaily, T., Ghanem, B.: SoccerNet: a scalable dataset for action spotting in soccer videos, pp. 1711–1721 (2018). Accessed: 27 Sept. 2022 (Online). Available: https://silviogiancola.github.io/SoccerNet
D’Orazio, T., Leo, M., Mosca, N., Spagnolo, P., Mazzeo, P.L.: A semi-automatic system for ground truth generation of soccer video sequences. In: 6th IEEE Int. Conf. Adv. Video Signal Based Surveillance, AVSS 2009, pp. 559–564 (2009). https://doi.org/10.1109/AVSS.2009.69
Feng, N., et al.: SSET: a dataset for shot segmentation, event detection, player tracking in soccer videos. Multimed. Tools Appl. 79(39–40), 28971–28992 (2020). https://doi.org/10.1007/S11042-020-09414-3/TABLES/13
Jiang, Y., Cui, K., Chen, L., Wang, C., Xu, C.: SoccerDB: a large-scale database for comprehensive video understanding. In: MMSports 2020—Proc. 3rd Int. Work. Multimed. Content Anal. Sport., pp. 1–8 (Oct. 2020). https://doi.org/10.1145/3422844.3423051
Acknowledgements
The authors declare no conflict of interest in this study.
Funding
We confirm that we do not have a funding source.
Author information
Authors and Affiliations
Contributions
S.A wrote the main manuscript text. S.V Proposed the idea and reviewed the manuscrip.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Akan, S., Varlı, S. Use of deep learning in soccer videos analysis: survey. Multimedia Systems 29, 897–915 (2023). https://doi.org/10.1007/s00530-022-01027-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-022-01027-0