Skip to main content
Log in

SwinCT: feature enhancement based low-dose CT images denoising with swin transformer

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

To reduce the potential harm to patients from X-ray radiation in computed tomography (CT), low-dose ray CT (LDCT) was conspicuous in clinical diagnosis and evaluation. However, the excessive noises in the LDCT scan significantly degrades the image quality, which seriously affects the clinical diagnostic efficacy. In this paper, we propose SwinCT, a feature-enhanced model for LDCT images noise reduction. SwinCT employs the feature enhancement module (FEM) based on Swin Transformer to extract and augment the high-level features of medical images, and simultaneously combines with the deep noise reduction encoder-decoder network in the downstream task, thus ensuring that more tissue and lesion details are retained after images denoising. Compared with the original LDCT images of noisy surrounding, the denoised image quality is significantly improved by the devised SwinCT denoising model, and the performance metrics of our method are also competitive with other advanced LDCT image denoising methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data and references presented in this study are available from the corresponding author upon reasonable request.

Notes

  1. https://pydicom.github.io/.

  2. https://pytorch.org/.

References

  1. Buzug, T.: Computed tomography. In: Springer handbook of medical technology, pp. 311–342. Springer, Berlin (2011)

    Chapter  Google Scholar 

  2. Seeram, E.: Computed tomography: physical principles and recent technical advances. Med. Imaging Radiat. Sci. 41(2), 87–109 (2010)

    Article  Google Scholar 

  3. Brenner, D., Hall, E.: Computed tomography—an increasing source of radiation exposure. N. Engl. J. Med. 357(22), 2277–2284 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Brody, A., Frush, D., Huda, W., Brent, R.: Radiation risk to children from computed tomography. Am. Acad. Pediatr. 120(3), 677–682 (2007)

    Google Scholar 

  5. Hobbs, J., Goldstein, N., Lind, K., et al.: Physician knowledge of radiation exposure and risk in medical imaging. j. Am. Coll. Radiol. 15(1), 34–43 (2018)

    Article  PubMed  Google Scholar 

  6. Diwakar, M., Kumar, M.: A review on CT image noise and its denoising. Biomed. Signal Process. Control 42, 73–88 (2018)

    Article  Google Scholar 

  7. Wang, G., Ye, J., Bruno, D.: Deep learning for tomographic image reconstruction. Nat. Mach. Intell. 2(12), 737–748 (2020)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

  9. Goodfellow, I., Abadie, J., Mirza, M., et al.: Generative adversarial networks. Commun. ACM. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  10. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16 16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2020)

  11. Chen, H., Zhang, Y., Zhang, W., et al.: Low-dose CT via convolutional neural network. Biomed. Opt. Express 8(2), 679–694 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, H., Zhang, Y., Kalra, M., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)

  14. You, C., Cong, W., Wang, G., et al.: Structurally-sensitive multi-scale deep neural network for low-dose CT denoising. IEEE Access 6, 41839–41855 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang, Q., Yan, P., Zhang, Y., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang, G., Hu, X.: Low-dose CT denoising using a progressive wasserstein adversarial network. Comput. Biol. Med.. Biol. Med. 135, 104625 (2021)

    Article  Google Scholar 

  17. Luthra, A., Sulakhe, H., Mittal, T., et al.: Eformer: edge enhancement based transformer for medical image denoising. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9824–9832 (2021)

  18. Zhang, Z., Yu, L., Liang, X., Zhao, W., Xing, L.: TransCT: dual-path transformer for low dose computed tomography. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 55–64 (2021)

  19. Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021)

  20. Feruglio, P., Vinegoni, C., Gros, J., Sbarbati, A., Weissleder, R.: Block matching 3D random noise filtering for absorption optical projection tomography. Phys. Med. Biol. 55(18), 5401–5415 (2010)

    Article  PubMed Central  Google Scholar 

  21. Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. Int. J. Comput. VisionComput. Vision 81(1), 24–52 (2009)

    Article  Google Scholar 

  22. Balda, M., Hornegger, J., Heismann, B.: Ray contribution masks for structure adaptive sinogram filtering. IEEE Trans. Med. Imaging 31(6), 1228–1239 (2012)

    Article  PubMed  Google Scholar 

  23. Ouyang, L., Solberg, T., Wang, J.: Effects of the penalty on the penalized weighted least-squares image reconstruction for low-dose. Phys. Med. Biol. 56(17), 5535–5552 (2011)

    Article  PubMed  Google Scholar 

  24. Cai, J., Jia, X., Gao, H., et al.: Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-principle study. IEEE Trans. Med. Imaging 33(8), 1581–1591 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu, Q., Yu, H., Mou, X., et al.: Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans. Med. Imaging 31(9), 1682–1697 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, Y., Ma, J., Fan, Y., Liang, Z.: Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction. Phys. Med. Biol. 57(23), 7923–7956 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gondara, L.: Medical image denoising using convolutional denoising autoencoders. In: IEEE International Conference on Data Mining Workshops (ICDMW), pp. 241–246 (2016)

  28. Gholizadeh, M., Alirezaie, J., Babyn, P.: Deep learning for low-dose CT denoising using perceptual loss and edge detection layer. J. Digit. Imaging Soc. Comput. Appl. Radiol. 33(2), 504–515 (2020)

    Google Scholar 

  29. Liang, T., Jin, Y., Li, Y., Wang, T.: EDCNN: edge enhancement-based densely connected network with compound loss for low-dose CT denoising. In: IEEE International Conference on Signal Processing (ICSP), Vol. 1 (2020)

  30. Jifara, W., Jiang, F., Rho, S., et al.: Medical image denoising using convolutional neural network: a residual learning approach. J. Supercomput.Supercomput. 75(2), 704–718 (2019)

    Article  Google Scholar 

  31. Shan, H., Zhang, Y., Yang, Q., Cheng, M., Liu, S.: 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans. Med. Imaging 37(6), 1522–1534 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu, J., Jiang, H., Ning, F., Li, M., Pang, W.: DFSNE-Net: deviant feature sensitive noise estimate network for low-dose CT denoising. Comput. Biol. Med.. Biol. Med. 149, 106061 (2022)

    Article  Google Scholar 

  33. Tang, Y., Du, Q., Wang, J.: CCN-CL: a content-noise complementary network with contrastive learning for low-dose computed tomography denoising. Comput. Biol. Med.. Biol. Med. 147, 105759 (2022)

    Article  CAS  Google Scholar 

  34. Yu, T., Zhao, G., Li, P., Yu, Y.: BOAT: bilateral local attention vision transformer (2022). arXiv preprint arXiv: 2201.13027. https://doi.org/10.48550/arXiv.2201.13027

  35. Liang, J., Cao, J., Sun, G., et al.: SwinIR: image restoration using swin transformer. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1833–1844 2(021)

  36. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 432–440 (2016)

  37. McCollough, C., Bartley, A., Carter, R., et al.: Low-dose CT for the detection and classification of metastatic liver lesions: results of the 2016 low dose CT grand challenge. Med. Phys. 44(10), 339–352 (2017)

    Article  Google Scholar 

  38. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. 2018. https://openreview.net/forum?id=rk6qdGgCZ

  39. L. Yang, Y. Feng, M. Zhou et al., "Multi-level network based on transformer encoder for fine-grained image–text matching. Multimedia Systems," vol. 29, no. 2, Apr. 2023.

  40. Reddy, B.B., Sudhakar, M.V., Reddy, P.R., et al.: Ensemble deep honey architecture for COVID-19 prediction using CT scan and chest X-ray images. Multimedia Syst. 29(2), 1981–1994 (2023)

    Google Scholar 

  41. Wang, G., Huang, S., Tao, Z.: Shallow multi-branch attention convolutional neural network for micro-expression recognition. Multimedia Syst. 29(2), 1961–1980 (2023)

    Google Scholar 

  42. Kausar, A., Razzak, I., Shapiai, M.I., et al.: 3D shallow deep neural network for fast and precise segmentation of left atrium. Multimedia Syst. 27(1), 1739–1749 (2023)

    Article  Google Scholar 

  43. Shan, H., Padole, A., Homayounieh, F., et al.: Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat. Mach. Intell. 1(6), 269–276 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tian, C., Xu, Y., Li, Z., et al.: Attention-guided CNN for image denoising. Neural Netw.Netw. 124, 117–129 (2020)

    Article  Google Scholar 

  45. Wang, D., Fan, F., Wu, Z., et al.: CTformer: convolution-free Token2Token dilated vision transformer for low-dose CT denoising. Phys. Med. Biol. 68(6), 065012 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (61976123, 62072213); Taishan Young Scholars Program of Shandong Province; and Key Development Program for Basic Research of Shandong Province (ZR2020ZD44).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text and prepared figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Muwei Jian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by A. Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, M., Yu, X., Zhang, H. et al. SwinCT: feature enhancement based low-dose CT images denoising with swin transformer. Multimedia Systems 30, 1 (2024). https://doi.org/10.1007/s00530-023-01202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-023-01202-x

Keywords

Navigation