Abstract
The diabetic foot ulcer (DFU) is a significant medical complication for diabetic patients, which often leads to lower limb amputation. The manual identification of ischaemia in DFU is laborious, time-consuming, and costly. This study aims to develop an efficient deep learning (DL) method for the early identification of ischaemia in DFU. Therefore, a novel Convolutional Neural Network (CNN) architecture (HCNNet) is proposed by integrating multiple hybridised blocks from inception, residual, and dense modules along with appropriately placed Squeeze-and-Excitation (SE) block and intermediate transition layers. The proposed HCNNet is trained several times using various optimizer and learning rate settings to optimise its performance. It achieves promising Area Under the ROC Curve (AUC) scores of 0.999 for ischaemia identification. The experimental results show that the proposed HCNNet outperforms existing State-Of-The-Art (SOTA) methods.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig1_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-023-01241-4/MediaObjects/530_2023_1241_Fig12_HTML.png)
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the authors but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are, however, available with permission from the Department of Computing and Mathematics, Manchester Metropolitan University England (URL: http://www2.docm.mmu.ac.uk/STAFF/M.Yap/dataset.php).
References
Yap, M.H., Cassidy, B., Pappachan, J.M., O’Shea, C., Gillespie, D., Reeves, N.D.: Analysis towards classification of infection and ischaemia of diabetic foot ulcers. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 1–4 (2021). IEEE
Mallikarjuna, S., Shivakumara, P., Khare, V., Basavanna, M., Pal, U., Poornima, B.: Multi-gradient-direction based deep learning model for Arecanut disease identification. CAAI Trans. Intell. Technol. 7(2), 156–166 (2022)
Das, S.K., Namasudra, S., Kumar, A., Moparthi, N.R.: Aespnet: attention enhanced stacked parallel network to improve automatic diabetic foot ulcer identification. Image Vis. Comput. 138, 104809 (2023)
Jiang, S., Gu, Y., Kumar, E.: Magnetic resonance imaging (mri) brain tumor image classification based on five machine learning algorithms. Cloud Comput. Data Sci. 4(2), 122–133 (2023)
Taherdoost, H., Madanchian, M.: Decision making: Models, processes, techniques. Cloud Comput. Data Sci. 5(1), 1–14 (2023)
Jia, Z., Wang, W., Zhang, J., Li, H.: Contact high-temperature strain automatic calibration and precision compensation research. J. Artif. Intell. Technol. 2(2), 69–76 (2022)
Khemchandani, M.A., Jadhav, S.M., Iyer, B.: Brain tumor segmentation and identification using particle imperialist deep convolutional neural network in mri images. IJIMAI 7(7), 38–47 (2022)
Chakraborty, R., Verma, G., Namasudra, S.: Ifodpso-based multi-level image segmentation scheme aided with masi entropy. J. Ambient. Intell. Humaniz. Comput. 12, 7793–7811 (2021)
Zhang, H., Wei, Y., Zhou, H., Wu, Q.: Ed-dehaze net: encoder and decoder dehaze network. IJIMAI 7(5), 93–99 (2022)
García, A.J.F., Rodríguez, J.C.P., Ramos, A.P., Figueroa, F.S., Gutiérrez, J.D.: Compareml: a novel approach to supporting preliminary data analysis decision making. IJIMAI 7(4), 225–238 (2022)
Filipe, V., Teixeira, P., Teixeira, A.: Automatic classification of foot thermograms using machine learning techniques. Algorithms 15(7), 236 (2022)
Goyal, M., Reeves, N.D., Davison, A.K., Rajbhandari, S., Spragg, J., Yap, M.H.: Dfunet: convolutional neural networks for diabetic foot ulcer classification. IEEE Trans. Emerg. Top. Comput. Intell. 4(5), 728–739 (2018)
Alzubaidi, L., Fadhel, M.A., Oleiwi, S.R., Al-Shamma, O., Zhang, J.: Dfu_qutnet: diabetic foot ulcer classification using novel deep convolutional neural network. Multimed. Tools Appl. 79(21), 15655–15677 (2020). https://doi.org/10.1007/s11042-019-07820-w
Veredas, F., Mesa, H., Morente, L.: Binary tissue classification on wound images with neural networks and Bayesian classifiers. IEEE Trans. Med. Imaging 29(2), 410–427 (2009). https://doi.org/10.1109/TMI.2009.2033595
Xu, P., Wang, K., Hassan, M.M., Chen, C.-M., Lin, W., Hassan, M.R., Fortino, G.: Adversarial robustness in graph-based neural architecture search for edge ai transportation systems. IEEE Trans. Intell. Transport. Syst. 24(8), 8465–8474 (2022)
Hassan, F.S., Gutub, A.: Improving data hiding within colour images using hue component of hsv colour space. CAAI Trans. Intell. Technol. 7(1), 56–68 (2022)
Gao, S., Li, S.: Bloody mahjong playing strategy based on the integration of deep learning and xgboost. CAAI Trans. Intell. Technol. 7(1), 95–106 (2022)
Scebba, G., Zhang, J., Catanzaro, S., Mihai, C., Distler, O., Berli, M., Karlen, W.: Detect-and-segment: a deep learning approach to automate wound image segmentation. Inform. Med. Unlocked 29, 100884 (2022)
Wang, L., Pedersen, P.C., Agu, E., Strong, D.M., Tulu, B.: Area determination of diabetic foot ulcer images using a cascaded two-stage svm-based classification. IEEE Trans. Biomed. Eng. 64(9), 2098–2109 (2016). https://doi.org/10.1109/TBME.2016.2632522
Ohura, N., Mitsuno, R., Sakisaka, M., Terabe, Y., Morishige, Y., Uchiyama, A., Okoshi, T., Shinji, I., Takushima, A.: Convolutional neural networks for wound detection: the role of artificial intelligence in wound care. J. Wound Care 28(Sup10), 13–24 (2019). https://doi.org/10.12968/jowc.2019.28.Sup10.S13
Goyal, M., Reeves, N.D., Rajbhandari, S., Ahmad, N., Wang, C., Yap, M.H.: Recognition of ischaemia and infection in diabetic foot ulcers: dataset and techniques. Comput. Biol. Med. 117, 103616 (2020). https://doi.org/10.1016/j.compbiomed.2020.103616
Rajinikanth, V., Kadry, S., Moreno-Ger, P.: Resnet18 supported inspection of tuberculosis in chest radiographs with integrated deep, lbp, and dwt features. Int. J. Interact. Multimedia Artif. Intell. 8(2), 38–46 (2023)
Namasudra, S.: Taxonomy of DNA-based security models. In: Namasudra S, Deka GC (eds) Advances of DNA Computing in Cryptography. Chapman and Hall/CRC (2018)
Das, S.K., Roy, P., Mishra, A.K.: Recognition of ischaemia and infection in diabetic foot ulcer: a deep convolutional neural network based approach. Int. J. Imaging Syst. Technol. 32(1), 192–208 (2021)
Zheng, M., Zhi, K., Zeng, J., Tian, C., You, L.: A hybrid cnn for image denoising. J. Artif. Intell. Technol. 2(3), 93–99 (2022)
Ta, N., Chen, H., Liu, X., Jin, N.: Let-net: locally enhanced transformer network for medical image segmentation. Multimedia Syst. 29, 3847–3861 (2023)
Meng, J., Li, Y., Liang, H., Ma, Y.: Single-image dehazing based on two-stream convolutional neural network. J. Artif. Intell. Technol. 2(3), 100–110 (2022)
Ahsan, M., Naz, S., Ahmad, R., Ehsan, H., Sikandar, A.: A deep learning approach for diabetic foot ulcer classification and recognition. Information 14(1), 36 (2023)
Toofanee, M.S.A., Dowlut, S., Hamroun, M., Tamine, K., Petit, V., Duong, A.K., Sauveron, D.: Dfu-siam a novel diabetic foot ulcer classification with deep learning. IEEE Access. 11, 98315–98332 (2023)
Reyes-Luévano, J., Guerrero-Viramontes, J., Romo-Andrade, J.R., Funes-Gallanzi, M.: Dfu_virnet: a novel visible-infrared cnn to improve diabetic foot ulcer classification and early detection of ulcer risk zones. Biomed. Signal Process. Control 86, 105341 (2023)
Khalil, M., Naeem, A., Naqvi, R.A., Zahra, K., Muqarib, S.A., Lee, S.-W.: Deep learning-based classification of abrasion and ischemic diabetic foot sores using camera-captured images. Mathematics 11(17), 3793 (2023)
Liu, Z., John, J., Agu, E.: Diabetic foot ulcer ischemia and infection classification using efficientnet deep learning models. IEEE Open J. Eng. Med. Biol. 3, 189–201 (2022)
Santos, F., Santos, E., Vogado, L.H., Ito, M., Bianchi, A., Tavares, J.M., Veras, R.: Dfu-vgg, a novel and improved vgg-19 network for diabetic foot ulcer classification. In: 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1–4 (2022). IEEE
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016). http://arxiv.org/abs/1512.00567
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Shafiq, H., Gilanie, G., Sajid, M., Ahsan, M.: Dental radiology: a convolutional neural network-based approach to detect dental disorders from dental images in a real-time environment. Multimedia Syst., p. 1–13 (2023)
Keskar, N.S., Socher, R.: Improving generalization performance by switching from adam to sgd. arXiv preprint arXiv:1712.07628 (2017)
Wilson, A.C., Roelofs, R., Stern, M., Srebro, N., Recht, B.: The marginal value of adaptive gradient methods in machine learning. arXiv preprint arXiv:1705.08292 (2017)
Author information
Authors and Affiliations
Contributions
SKD is the main author of this paper, who has conceived the idea and discussed it with all co-authors. He has also developed all the algorithms. SN has performed the simulations of this paper and write-up of this work. AKS has supervised the entire work, evaluated the performance, and proofread the paper.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Das, S.K., Namasudra, S. & Sangaiah, A.K. HCNNet: hybrid convolution neural network for automatic identification of ischaemia in diabetic foot ulcer wounds. Multimedia Systems 30, 36 (2024). https://doi.org/10.1007/s00530-023-01241-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00530-023-01241-4