Skip to main content
Log in

HA-Net: a SAR image ship detector based on hybrid attention

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Synthetic aperture radar (SAR) ship image recognition technology is essential for monitoring and identifying marine vessels. However, the existing ship detection methods are not ideal when dealing with multi-scale ships under complex backgrounds. This article proposes a SAR ship detection network (HA-Net) based on hybrid attention to solve the problem of ship detection in complex backgrounds. Firstly, this study designs the hybrid attention feature enhancement module (HAFE) and hybrid attention feature fusion module (HAFF). The HAFE and HAFF based on hybrid attention can improve the network's feature extraction and feature fusion ability. Secondly, this study presents the enhanced spatial pyramid pooling (ESPP) module to enhance the model's ability to recognize multi-scale targets by combining contextual information and capturing global dependencies. The experiments on SSDD and HRSID datasets indicate that the mAP50 of HA-Net is 96.2% and 88.2%, respectively, which is 1.6% and 2.0% better than YOLOv5. Furthermore, a comparison with other well-known detection algorithms on the ship dataset shows that HA-Net has superior detection performance. Additionally, HA-Net's FPS reaches 87.6, which can satisfy the demand for real-time ship detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Sun, Z.Z., Dai, M.C., Leng, X.G., Lei, Y., Xiong, B.L., Ji, K.F., Kuang, G.Y.: An anchor-free detection method for ship targets in high-resolution SAR images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 7799–7816 (2021)

    Article  Google Scholar 

  2. Qu, T., Zhang, Y., Wu, J.J.: A novel AFNCS algorithm for super-resolution SAR in curve trajectory. Multimedia Syst. 27, 837–844 (2021)

    Article  Google Scholar 

  3. Chen, F., Balzter, H., Zhou, F.X., Ren, P., Zhou, Y.: DGNet: distribution guided efficient learning for oil spill image segmentation. IEEE Trans. Geosci. Remote Sens. 61, 1–17 (2023)

    Google Scholar 

  4. Luo, Y.C., Ci, Y.S., Jiang, S.X., Wei, X.L.: A novel lightweight real-time traffic sign detection method based on an embedded device and YOLOv8. J. Real-Time Image Process. 21, 24 (2024)

    Article  Google Scholar 

  5. Sun, Z.Z., Leng, X.G., Lei, Y., Xiong, B.L., Ji, K.F., Kuang, G.Y.: BiFA-YOLO: a novel YOLO-based method for arbitrary-oriented ship detection in high-resolution SAR images. Remote Sens. 13, 4209 (2021)

    Article  Google Scholar 

  6. Xiong, B.L., Sun, Z.Z., Wang, J., Leng, X.G., Ji, K.F.: A lightweight model for ship detection and recognition in complex-scene SAR images. Remote Sens. 14, 6053 (2022)

    Article  Google Scholar 

  7. Yang, Z.Q., Lai, Y.P., Zhou, H., Tian, Y.W., Qin, Y., Lv, Z.W.: Improving ship detection based on decision tree classification for high frequency surface wave radar. J. Mar. Sci. Eng. 11, 493 (2023)

    Article  Google Scholar 

  8. Liu, T., Tang, T., Liu, W.J., Gao, G.: G-Wishart distribution in multilook polarimetric whitening filter and its application. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

  9. Chen, Y.T., Zhang, Y.Y., Wang, J.L., Liu, Y.: Yolov5s-MSD: a multi-scale ship detector for visible video image. Multimedia Syst. (2024). https://doi.org/10.1007/s00530-023-01196-6

    Article  Google Scholar 

  10. Zhang, X.H., Feng, S.J., Zhao, C.X., Sun, Z.Z., Zhang, S.Q., Ji, F.: MGSFA-Net: multiscale global scattering feature association network for SAR ship target recognition. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 17, 4611–4625 (2024)

    Article  Google Scholar 

  11. Zhang, L.L., Liu, Y.X., Huang, Y.F., Qu, L.L.: Regional prediction-aware network with cross-scale self-attention for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

  12. Ma, X.R., Hou, S.L., Wang, Y.Y., Wang, J., Wang, H.Y.: Multiscale and dense ship detection in SAR images based on key-point estimation and attention mechanism. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2022)

    Google Scholar 

  13. Tang, G., Zhao, H.R., Claramunt, C., Zhu, W.D., Wang, S.M., Wang, Y.D., Ding, H.: PPA-Net: pyramid pooling attention network for multi-scale ship detection in SAR images. Remote Sens. 15, 2855 (2023)

    Article  Google Scholar 

  14. Ren, S.Q., He, K.M., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: 29th Annual Conference on Neural Information Processing Systems (NIPS), vol. 28 (2015)

  15. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2015). https://doi.org/10.1109/TPAMI.2015.2389824

    Article  Google Scholar 

  16. Nie, X., Duan, M., Ding, H., Hu, B., Wong, E.K.: Attention mask R-CNN for ship detection and segmentation from remote sensing images. IEEE Access 8, 9325–9334 (2020)

    Article  Google Scholar 

  17. Li, D., Liang, Q.H., Liu, H.Q., Liu, Q.H., Liu, H.J., Liao, G.S.: A novel multidimensional domain deep learning network for SAR ship detection. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)

    Google Scholar 

  18. Suo, Z.L., Zhao, Y.B., Hu, Y.L.: An effective multi-layer attention network for SAR ship detection. J. Mar. Sci. Eng. 11, 906 (2023)

    Article  Google Scholar 

  19. Zhang, Y.P., Lu, D.D., Qiu, X.L., Li, F.: Scattering-point-guided RPN for oriented ship detection in SAR images. Remote Sens. 15, 1411 (2023)

    Article  Google Scholar 

  20. Zhou, Y.C., Fu, K., Han, B., Yang, J.X., Pan, Z.X., Hu, Y.X., Yin, D.: D-MFPN: a doppler feature matrix fused with a multilayer feature pyramid network for SAR ship detection. Remote Sens. 15, 626 (2023)

    Article  Google Scholar 

  21. Wang, S.Y., Cai, Z.C., Yuan, J.Y.: Automatic SAR ship detection based on multifeature fusion network in spatial and frequency domains. IEEE Trans. Geosci. Remote Sens. 61, 1–11 (2023)

    Article  Google Scholar 

  22. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: single shot multibox detector. In: 14th European Conference on Computer Vision (ECCV) 9905, pp. 21–37 (2016)

  23. Tian, Z., Shen, C.H., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9626–9635 (2019)

  24. Jiang, S.X., Zhou, X.R.: DWSC-YOLO: a lightweight ship detector of SAR images based on deep learning. J. Mar. Sci. Eng. 10, 1699 (2022)

    Article  Google Scholar 

  25. Zhu, M.M., Hu, G.P., Zhou, H., Wang, S.Q., Feng, Z., Yue, S.J.: A ship detection method via redesigned FCOS in large-scale SAR images. Remote Sens. 14, 1153 (2022)

    Article  Google Scholar 

  26. Su, N., He, J.Y., Yan, Y.M., Zhao, C.H., Xing, W.: SII-Net: spatial information integration network for small target detection in SAR images. Remote Sens. 14, 442 (2022)

    Article  Google Scholar 

  27. Shan, H.L., Fu, X.W., Lv, Z.K., Zhang, S.: SAR ship detection algorithm based on deep dense sim attention mechanism network. IEEE Sens. J. 23, 16032–16041 (2023)

    Article  Google Scholar 

  28. Chen, Z., Liu, C., Filaretov, V.F., Yukhimets, D.A.: Multi-scale ship detection algorithm based on YOLOv7 for complex scene SAR images. Remote Sens. 15, 2071 (2023)

    Article  Google Scholar 

  29. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint. arXiv:2004.10934[cs.CV] (2020)

  30. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

  31. Zhong, Z., Lin, Z.Q., Bidart, R., Hu, X., Wong, A.: Squeeze-and-attention networks for semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

  32. Yu, F., Koltun, V., Funkhouser, T.:Dilated residual networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 472-480 (2017)

  33. Hu, J., Shen, L., Sun, G., Albanie, S.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. (2017). https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  34. Rezatofighi, H., Tsoi, N., Gwak, J.Y., Sadeghian, A., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

  35. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. AAAI 34(7), 12993–13000 (2019)

    Article  Google Scholar 

  36. Zhang, Y.F., Ren, W.Q., Zhang, Z., Jia, Z., Wang, L., Tan, T.N.: Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 506, 146–157 (2022)

    Article  Google Scholar 

  37. Zhang, T., Zhang, X., Li, J., Xu, X., Wang, B., Zhan, X., Xu, Y., Ke, X., Zeng, T., Su, H.: SAR ship detection dataset (SSDD): official release and comprehensive data analysis. Remote Sens. 13, 3690 (2021)

    Article  Google Scholar 

  38. Wei, S., Zeng, X., Qu, Q., Wang, M., Shi, J.: HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 8, 1–1 (2020)

    Google Scholar 

  39. Cui, Z., Li, Q., Cao, Z., Liu, N.: Dense attention pyramid networks for multi-scale ship detection in SAR images. IEEE Trans. Geosci. Remote Sens. 57(11), 8983–8997 (2019)

    Article  Google Scholar 

  40. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

  41. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M., YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7464–7475 (2023)

  42. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv preprint. arXiv:2107.08430 [cs.CV] (2021)

Download references

Acknowledgements

This work is supported by the project of National Key R&D Program of China (Grant: 2019YFE0105400) and Intelligent Situation Awareness System for Smart Ship (Grant: MC-201920-X01).

Funding

National Key R&D Program of China, 2019YFE0105400, 2019YFE0105400, 2019YFE0105400, 2019YFE0105400, Intelligent Situation Awareness System for Smart Ship, MC-201920-X01, MC-201920-X01, MC-201920-X01.

Author information

Authors and Affiliations

Authors

Contributions

S.C. proposed the experimental idea, S.C. and M.Y and F.G. completed the experiment and wrote the paper, and H.M. revised and improved the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hao Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies involving human participants/animals performed by any of the authors.

Additional information

Communicated by Hongtao Xie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Meng, H., Yuan, M. et al. HA-Net: a SAR image ship detector based on hybrid attention. Multimedia Systems 30, 172 (2024). https://doi.org/10.1007/s00530-024-01374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-024-01374-0

Keywords

Navigation