Abstract
Synthetic aperture radar (SAR) ship image recognition technology is essential for monitoring and identifying marine vessels. However, the existing ship detection methods are not ideal when dealing with multi-scale ships under complex backgrounds. This article proposes a SAR ship detection network (HA-Net) based on hybrid attention to solve the problem of ship detection in complex backgrounds. Firstly, this study designs the hybrid attention feature enhancement module (HAFE) and hybrid attention feature fusion module (HAFF). The HAFE and HAFF based on hybrid attention can improve the network's feature extraction and feature fusion ability. Secondly, this study presents the enhanced spatial pyramid pooling (ESPP) module to enhance the model's ability to recognize multi-scale targets by combining contextual information and capturing global dependencies. The experiments on SSDD and HRSID datasets indicate that the mAP50 of HA-Net is 96.2% and 88.2%, respectively, which is 1.6% and 2.0% better than YOLOv5. Furthermore, a comparison with other well-known detection algorithms on the ship dataset shows that HA-Net has superior detection performance. Additionally, HA-Net's FPS reaches 87.6, which can satisfy the demand for real-time ship detection.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig5_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig7_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig9_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig13_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00530-024-01374-0/MediaObjects/530_2024_1374_Fig14_HTML.png)
Similar content being viewed by others
Data availability
All data included in this study are available upon request by contact with the corresponding author.
References
Sun, Z.Z., Dai, M.C., Leng, X.G., Lei, Y., Xiong, B.L., Ji, K.F., Kuang, G.Y.: An anchor-free detection method for ship targets in high-resolution SAR images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 7799–7816 (2021)
Qu, T., Zhang, Y., Wu, J.J.: A novel AFNCS algorithm for super-resolution SAR in curve trajectory. Multimedia Syst. 27, 837–844 (2021)
Chen, F., Balzter, H., Zhou, F.X., Ren, P., Zhou, Y.: DGNet: distribution guided efficient learning for oil spill image segmentation. IEEE Trans. Geosci. Remote Sens. 61, 1–17 (2023)
Luo, Y.C., Ci, Y.S., Jiang, S.X., Wei, X.L.: A novel lightweight real-time traffic sign detection method based on an embedded device and YOLOv8. J. Real-Time Image Process. 21, 24 (2024)
Sun, Z.Z., Leng, X.G., Lei, Y., Xiong, B.L., Ji, K.F., Kuang, G.Y.: BiFA-YOLO: a novel YOLO-based method for arbitrary-oriented ship detection in high-resolution SAR images. Remote Sens. 13, 4209 (2021)
Xiong, B.L., Sun, Z.Z., Wang, J., Leng, X.G., Ji, K.F.: A lightweight model for ship detection and recognition in complex-scene SAR images. Remote Sens. 14, 6053 (2022)
Yang, Z.Q., Lai, Y.P., Zhou, H., Tian, Y.W., Qin, Y., Lv, Z.W.: Improving ship detection based on decision tree classification for high frequency surface wave radar. J. Mar. Sci. Eng. 11, 493 (2023)
Liu, T., Tang, T., Liu, W.J., Gao, G.: G-Wishart distribution in multilook polarimetric whitening filter and its application. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)
Chen, Y.T., Zhang, Y.Y., Wang, J.L., Liu, Y.: Yolov5s-MSD: a multi-scale ship detector for visible video image. Multimedia Syst. (2024). https://doi.org/10.1007/s00530-023-01196-6
Zhang, X.H., Feng, S.J., Zhao, C.X., Sun, Z.Z., Zhang, S.Q., Ji, F.: MGSFA-Net: multiscale global scattering feature association network for SAR ship target recognition. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 17, 4611–4625 (2024)
Zhang, L.L., Liu, Y.X., Huang, Y.F., Qu, L.L.: Regional prediction-aware network with cross-scale self-attention for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)
Ma, X.R., Hou, S.L., Wang, Y.Y., Wang, J., Wang, H.Y.: Multiscale and dense ship detection in SAR images based on key-point estimation and attention mechanism. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2022)
Tang, G., Zhao, H.R., Claramunt, C., Zhu, W.D., Wang, S.M., Wang, Y.D., Ding, H.: PPA-Net: pyramid pooling attention network for multi-scale ship detection in SAR images. Remote Sens. 15, 2855 (2023)
Ren, S.Q., He, K.M., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: 29th Annual Conference on Neural Information Processing Systems (NIPS), vol. 28 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2015). https://doi.org/10.1109/TPAMI.2015.2389824
Nie, X., Duan, M., Ding, H., Hu, B., Wong, E.K.: Attention mask R-CNN for ship detection and segmentation from remote sensing images. IEEE Access 8, 9325–9334 (2020)
Li, D., Liang, Q.H., Liu, H.Q., Liu, Q.H., Liu, H.J., Liao, G.S.: A novel multidimensional domain deep learning network for SAR ship detection. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)
Suo, Z.L., Zhao, Y.B., Hu, Y.L.: An effective multi-layer attention network for SAR ship detection. J. Mar. Sci. Eng. 11, 906 (2023)
Zhang, Y.P., Lu, D.D., Qiu, X.L., Li, F.: Scattering-point-guided RPN for oriented ship detection in SAR images. Remote Sens. 15, 1411 (2023)
Zhou, Y.C., Fu, K., Han, B., Yang, J.X., Pan, Z.X., Hu, Y.X., Yin, D.: D-MFPN: a doppler feature matrix fused with a multilayer feature pyramid network for SAR ship detection. Remote Sens. 15, 626 (2023)
Wang, S.Y., Cai, Z.C., Yuan, J.Y.: Automatic SAR ship detection based on multifeature fusion network in spatial and frequency domains. IEEE Trans. Geosci. Remote Sens. 61, 1–11 (2023)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: single shot multibox detector. In: 14th European Conference on Computer Vision (ECCV) 9905, pp. 21–37 (2016)
Tian, Z., Shen, C.H., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9626–9635 (2019)
Jiang, S.X., Zhou, X.R.: DWSC-YOLO: a lightweight ship detector of SAR images based on deep learning. J. Mar. Sci. Eng. 10, 1699 (2022)
Zhu, M.M., Hu, G.P., Zhou, H., Wang, S.Q., Feng, Z., Yue, S.J.: A ship detection method via redesigned FCOS in large-scale SAR images. Remote Sens. 14, 1153 (2022)
Su, N., He, J.Y., Yan, Y.M., Zhao, C.H., Xing, W.: SII-Net: spatial information integration network for small target detection in SAR images. Remote Sens. 14, 442 (2022)
Shan, H.L., Fu, X.W., Lv, Z.K., Zhang, S.: SAR ship detection algorithm based on deep dense sim attention mechanism network. IEEE Sens. J. 23, 16032–16041 (2023)
Chen, Z., Liu, C., Filaretov, V.F., Yukhimets, D.A.: Multi-scale ship detection algorithm based on YOLOv7 for complex scene SAR images. Remote Sens. 15, 2071 (2023)
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint. arXiv:2004.10934[cs.CV] (2020)
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)
Zhong, Z., Lin, Z.Q., Bidart, R., Hu, X., Wong, A.: Squeeze-and-attention networks for semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Yu, F., Koltun, V., Funkhouser, T.:Dilated residual networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 472-480 (2017)
Hu, J., Shen, L., Sun, G., Albanie, S.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. (2017). https://doi.org/10.1109/TPAMI.2019.2913372
Rezatofighi, H., Tsoi, N., Gwak, J.Y., Sadeghian, A., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. AAAI 34(7), 12993–13000 (2019)
Zhang, Y.F., Ren, W.Q., Zhang, Z., Jia, Z., Wang, L., Tan, T.N.: Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 506, 146–157 (2022)
Zhang, T., Zhang, X., Li, J., Xu, X., Wang, B., Zhan, X., Xu, Y., Ke, X., Zeng, T., Su, H.: SAR ship detection dataset (SSDD): official release and comprehensive data analysis. Remote Sens. 13, 3690 (2021)
Wei, S., Zeng, X., Qu, Q., Wang, M., Shi, J.: HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 8, 1–1 (2020)
Cui, Z., Li, Q., Cao, Z., Liu, N.: Dense attention pyramid networks for multi-scale ship detection in SAR images. IEEE Trans. Geosci. Remote Sens. 57(11), 8983–8997 (2019)
Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)
Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M., YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7464–7475 (2023)
Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv preprint. arXiv:2107.08430 [cs.CV] (2021)
Acknowledgements
This work is supported by the project of National Key R&D Program of China (Grant: 2019YFE0105400) and Intelligent Situation Awareness System for Smart Ship (Grant: MC-201920-X01).
Funding
National Key R&D Program of China, 2019YFE0105400, 2019YFE0105400, 2019YFE0105400, 2019YFE0105400, Intelligent Situation Awareness System for Smart Ship, MC-201920-X01, MC-201920-X01, MC-201920-X01.
Author information
Authors and Affiliations
Contributions
S.C. proposed the experimental idea, S.C. and M.Y and F.G. completed the experiment and wrote the paper, and H.M. revised and improved the paper. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies involving human participants/animals performed by any of the authors.
Additional information
Communicated by Hongtao Xie.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cai, S., Meng, H., Yuan, M. et al. HA-Net: a SAR image ship detector based on hybrid attention. Multimedia Systems 30, 172 (2024). https://doi.org/10.1007/s00530-024-01374-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00530-024-01374-0