Skip to main content

Advertisement

Log in

A three-stage quality evaluation method for experience products: taking animation as an example

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The diversity and dynamics of quality index information bring challenges to quality assessment of experience products. This paper proposes a three-stage quality assessment method based on grounded theory, association analysis, combined weighting, sentiment analysis and cloud model. Firstly, based on online reviews, the true quality indicators of animation are recognized by grounded theory, and the relationships among quality indicators are identified by association analysis. Secondly, by introducing the principle of gaming, the combined weighting based on network opinion leader and network opinion follower is proposed. Finally, an animation comprehensive quality evaluation model based on cloud model and sentiment analysis is proposed. The feasibility and practicability of the method are verified on multiple animation datasets, and the quality levels of different sales products are obtained, providing a direction for animation quality improvement. Meanwhile, this paper further demonstrates the method's superiority by comparing it with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nelson, P.: Information and consumer behavior. J Polit Econ 78, 311–329 (1970). https://doi.org/10.1086/259630

    Article  Google Scholar 

  2. Tang, Z., Wang, T., Cui, J., Han, B., He, B.: Predicting total sales volume interval of an experiential product with short life cycle before production: similarity comparison in attribute relationship patterns. Manag. Decis. 59, 2528–2548 (2021). https://doi.org/10.1108/md-03-2020-0320

    Article  Google Scholar 

  3. Business Brand Institute. Prospective report on Chinese animation going to sea in 2023 (2023). https://www.hanghangcha.com/pdf.html. Accessed 22 Oct 2023

  4. Enlightent. Analysis of long video platform animation webcast in the first half of 2023 (2023). https://www.hanghangcha.com/pdf.html. Accessed 22 Oct 2023

  5. Liang, H., Sit, J., Chang, J., Zhang, J.: Computer animation data management: review of evolution phases and emerging issues. Int. J. Inf. Manage. 36, 1089–1100 (2016). https://doi.org/10.1016/j.ijinfomgt.2016.07.008

    Article  Google Scholar 

  6. Seshadrinathan, K., Bovik, A.C.: Automatic prediction of perceptual quality of multimedia signals-a survey. Multimed. Tools Appl. 51, 163–186 (2011). https://doi.org/10.1007/s11042-010-0625-9

    Article  Google Scholar 

  7. Kim, H.J., Choi, S.G.: QoE assessment model for multimedia streaming services using QoS parameters. Multimed. Tools Appl. 72, 2163–2175 (2014). https://doi.org/10.1007/s11042-013-1507-8

    Article  Google Scholar 

  8. Huang, P., Lurie, N.H., Mitra, S.: Searching for experience on the web: an empirical examination of consumer behavior for search and experience goods. J. Mark. 73, 55–69 (2009). https://doi.org/10.1509/jmkg.73.2.55

    Article  Google Scholar 

  9. Ghose, A., Ipeirotis, P.G.: Estimating the helpfulness and economic impact of product reviews: mining text and reviewer characteristics. IEEE Trans. Knowl. Data Eng. 23, 1498–1512 (2011). https://doi.org/10.1109/tkde.2010.188

    Article  Google Scholar 

  10. Hong, H., Xu, D., Wang, G.A., Fan, W.: Understanding the determinants of online review helpfulness: a meta-analytic investigation. Decis. Support. Syst. 102, 1–11 (2017). https://doi.org/10.1016/j.dss.2017.06.007

    Article  Google Scholar 

  11. Yakubu, H., Kwong, C.K.: Forecasting the importance of product attributes using online customer reviews and google trends. Technol. Forecast. Soc. Change 171, 120983 (2021). https://doi.org/10.1016/j.techfore.2021.120983

    Article  Google Scholar 

  12. Lan, H., Ma, X., Qiao, W., Ma, L.: On the causation of seafarers’ unsafe acts using grounded theory and association rule. Reliab. Eng. Syst. Saf. 223, 108498 (2022). https://doi.org/10.1016/j.ress.2022.108498

    Article  Google Scholar 

  13. Yu, D., Fang, A., Xu, Z.: Topic research in fuzzy domain: based on LDA topic modelling. Inf Sci (N Y) 648, 119600 (2023). https://doi.org/10.1016/j.ins.2023.119600

    Article  Google Scholar 

  14. Wei, C., Meng, J., Zhu, L., Han, Z.: Assessing progress towards sustainable development goals for chinese urban land use: a new cloud model approach. J. Environ. Manage. 326, 116826 (2023). https://doi.org/10.1016/j.jenvman.2022.116826

    Article  Google Scholar 

  15. Wen, X., Nie, Y., Du, Z., Huang, L.: Operational safety assessment of straddle-type monorail vehicle system based on cloud model and improved CRITIC method. Eng. Fail. Anal. 139, 106463 (2022). https://doi.org/10.1016/j.engfailanal.2022.106463

    Article  Google Scholar 

  16. Yang, T., Dang, Y., Wu, J.: Dynamic perceived quality analysis using social media data at macro- and micro-levels. Ind. Manag. Data Syst. 123, 1465–1495 (2023). https://doi.org/10.1108/imds-08-2022-0478

    Article  Google Scholar 

  17. MandalMaiti, S.: A network promoter score (NePS): an indicator of product sales in e-commerce retailing sector. Electron. Mark. 32, 1327–1349 (2022). https://doi.org/10.1007/s12525-021-00503-1

    Article  Google Scholar 

  18. Agryzkov, T., Oliver, J.L., Tortosa, L., Vicent, J.F.: An algorithm for ranking the nodes of an urban network based on the concept of PageRank vector. Appl. Math. Comput. 219, 2186–2193 (2012). https://doi.org/10.1016/j.amc.2012.08.064

    Article  MathSciNet  Google Scholar 

  19. Liu, Y., Liu, Z., Li, S., Guo, Y., Liu, Q., Wang, G.: Cloud-cluster: an uncertainty clustering algorithm based on cloud model. Knowl. Based Syst. 263, 110261 (2023). https://doi.org/10.1016/j.knosys.2023.110261

    Article  Google Scholar 

  20. Phillips, T., Abdulla, W.: Developing a new ensemble approach with multi-class SVMs for manuka honey quality classification. Appl. Soft Comput. 111, 107710 (2021). https://doi.org/10.1016/j.asoc.2021.107710

    Article  Google Scholar 

  21. Tuttle, J.F., Blackburn, L.D., Powell, K.M.: On-line classification of coal combustion quality using nonlinear SVM for improved neural network NOx emission rate prediction. Comput. Chem. Eng. 141, 106990 (2020). https://doi.org/10.1016/j.compchemeng.2020.106990

    Article  Google Scholar 

  22. Fu, Y., Gao, P.P., Gao, X., Zhang, Y.: Quality evaluation of resistance spot welding based on dynamic reactance signal and radar diagram method. IEEE Sens. J. 24, 6666–6676 (2024). https://doi.org/10.1109/jsen.2024.3352632

    Article  Google Scholar 

  23. Jiang, Z., Wang, Y., Li, Y., Cao, H.: A new method for recognition and classification of power quality disturbances based on IAST and RF. Electr. Pow. Syst. Res. 226, 109939 (2024). https://doi.org/10.1016/j.epsr.2023.109939

    Article  Google Scholar 

  24. Hoi, K.I., Yuen, K.V., Mok, K.M.: Improvement of the multilayer perceptron for air quality modelling through an adaptive learning scheme. Comput. Geosci. 59, 148–155 (2013). https://doi.org/10.1016/j.cageo.2013.06.002

    Article  Google Scholar 

  25. He, J., Liu, D., Chen, X.: Wearable exercise electrocardiograph signal quality assessment based on fuzzy comprehensive evaluation algorithm. Comput. Commun. 151, 86–97 (2020). https://doi.org/10.1016/j.comcom.2019.12.051

    Article  Google Scholar 

  26. Li, D., Liu, C., Gan, W.: A new cognitive model: cloud model. Int. J. Intell. Syst. 24, 357–375 (2009). https://doi.org/10.1002/int.20340

    Article  Google Scholar 

  27. Zhang, L., Zhang, T., Lang, Y., Li, J., Ji, F.: Research on patent quality evaluation based on rough set and cloud model. Expert Syst. Appl. 235, 121057 (2024). https://doi.org/10.1016/j.eswa.2023.121057

    Article  Google Scholar 

  28. Guo, M., Zhao, J., Pan, D., Sun, M., Zhou, Y., Yan, B.: Normal cloud model theory-based comprehensive fuzzy assessment of wooden pagoda safety. J. Cult. Herit. 55, 1–10 (2022). https://doi.org/10.1016/j.culher.2022.02.001

    Article  Google Scholar 

  29. Xu, J., Ding, R., Li, M., Dai, T., Zheng, M., Yu, T., Sui, Y.: A new Bayesian network model for risk assessment based on cloud model, interval type-2 fuzzy sets and improved D-S evidence theory. Inf. Sci. (N Y) 618, 336–355 (2022). https://doi.org/10.1016/j.ins.2022.11.011

    Article  Google Scholar 

  30. Chen, H., Shen, Q., Feng, Z., Liu, Y.: Vulnerability assessment in urban metro systems based on an improved cloud model and a Bayesian network. Sustain. Cities Soc. 98, 104823 (2023). https://doi.org/10.1016/j.scs.2023.104823

    Article  Google Scholar 

  31. Thompson, J.J., Leung, B.H., Blair, M.R., Taboada, M.: Sentiment analysis of player chat messaging in the video game StarCraft 2: extending a lexicon-based model. Knowl. Based Syst. 137, 149–162 (2017). https://doi.org/10.1016/j.knosys.2017.09.022

    Article  Google Scholar 

  32. Liu, A., Mazumdar, T., Li, B.: Counterfactual decomposition of movie star effects with star selection. Manage. Sci. 61, 1704–1721 (2015). https://doi.org/10.1287/mnsc.2014.1923

    Article  Google Scholar 

  33. He, D., Tang, Z., Chen, Q., Han, Z., Zhao, D., Sun, F.: A two-stage deep graph clustering method for identifying the evolutionary patterns of the time series of animation view counts. Inf. Sci. (N Y) 642, 119155 (2023). https://doi.org/10.1016/j.ins.2023.119155

    Article  Google Scholar 

  34. Sharma, M., Basu, S., Chakraborty, S., Bose, I.: Determining the optimal release time of movies: a study of movie and market characteristics. Decis. Support. Syst. 165, 113893 (2023). https://doi.org/10.1016/j.dss.2022.113893

    Article  Google Scholar 

  35. Yalcinkaya, G., Aktekin, T.: Brand extension effects and core attributes of experience product franchises: a Bayesian approach. J. Prod. Innovat. Manag. 32, 731–746 (2015). https://doi.org/10.1111/jpim.12164

    Article  Google Scholar 

  36. Weia, Y.M.: The similarity network of motion pictures. Manage. Sci. 66, 1647–1671 (2020). https://doi.org/10.1287/mnsc.2018.3261

    Article  Google Scholar 

  37. Bharadwaj, N., Noble, C.H., Tower, A., Smith, L.M., Dong, Y.: Predicting innovation success in the motion picture industry: the influence of multiple quality signals. J. Prod. Innovat. Manag. 34, 659–680 (2017). https://doi.org/10.1111/jpim.12404

    Article  Google Scholar 

  38. Yeh, C.C.: Online word-of-mouth as a predictor of television rating. Online Inform. Rev. 39, 831–847 (2015). https://doi.org/10.1108/oir-01-2015-0033

    Article  Google Scholar 

  39. Bayo-Moriones, A., Etayo, C., Sánchez-Tabernero, A.: Political orientation and perceived quality of television channels. J. Serv. Theor. Pract. 25, 813–835 (2015). https://doi.org/10.1108/jstp-09-2014-0217

    Article  Google Scholar 

  40. Papathanassis, A., Knolle, F.: Exploring the adoption and processing of online holiday reviews: a grounded theory approach. Tour. Manag. 32, 215–224 (2011). https://doi.org/10.1016/j.tourman.2009.12.005

    Article  Google Scholar 

  41. Yu, S., Liu, Y., Tang, Y., Li, X., Li, W., Li, C., Zhang, Y., Lan, H.: Non-destructive quality assessment method for Korla fragrant pears based on electrical properties and adaptive neural-fuzzy inference system. Comput. Electron. Agric. 203, 107492 (2022). https://doi.org/10.1016/j.compag.2022.107492

    Article  Google Scholar 

  42. Ruan, D., Bian, J., Wang, Q., Wu, J., Yu, Y., Gu, Z.: Application of modified cloud model-level eigenvalue method in water quality evaluation. J. Hydrol. (Amst) 603, 126980 (2021). https://doi.org/10.1016/j.jhydrol.2021.126980

    Article  Google Scholar 

  43. Ye, Q., Zhang, Z., Law, R.: Sentiment classification of online reviews to travel destinations by supervised machine learning approaches expert. Syst. Appl. 36(6527), 6535 (2009). https://doi.org/10.1016/j.eswa.2008.07.035

    Article  Google Scholar 

  44. Gomes, L., da Silva, T.R., Côrtes, M.L.: BERT- and TF-IDF-based feature extraction for long-lived bug prediction in FLOSS: a comparative study. Inf. Softw. Technol. 160, 107217 (2023). https://doi.org/10.1016/j.infsof.2023.107217

    Article  Google Scholar 

  45. Liu, D., Zou, Z.: Water quality evaluation based on improved fuzzy matter-element method. J. Environ. Sci. (China) 24, 1210–1216 (2012). https://doi.org/10.1016/S1001-0742(11)60938-8

    Article  Google Scholar 

  46. Zhao, E., Kuo, Y.M., Chen, N.: Assessment of water quality under various environmental features using a site-specific weighting water quality index. Sci. Total. Environ. 783, 146868 (2021). https://doi.org/10.1016/j.scitotenv.2021.146868

    Article  Google Scholar 

  47. Mandal, S., Maiti,: A social promoter score (SPS) and review network: a method and a tool for predicting financial health of an online shopping brand. ArXiv (2018). https://doi.org/10.48550/arXiv.1804.04464

    Article  Google Scholar 

  48. Mandal, S., Maiti,: A rating prediction with review network feedback: a new direction in recommendation. IEEE Trans. Comput. Soc. Syst. 9, 740–750 (2022). https://doi.org/10.1109/tcss.2021.3108007

    Article  Google Scholar 

  49. Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat Interdiscip. Topics (2002). https://doi.org/10.1103/physrevE.66.035101

    Article  Google Scholar 

  50. Newman, M.E.J.: A measure of betweenness centrality based on random walks. Soc. Networks 27, 39–54 (2005). https://doi.org/10.1016/j.socnet.2004.11.009

    Article  Google Scholar 

  51. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc Networks 1, 215–239 (1978). https://doi.org/10.1016/0378-8733(78)90021-7

    Article  Google Scholar 

  52. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92, 1170–1182 (1987). https://doi.org/10.1086/228631

    Article  Google Scholar 

  53. Gama Dessavre, D., Ramirez-Marquez, J.E., Barker, K.: Multidimensional approach to complex system resilience analysis. Reliab. Eng. Syst. Saf. 149, 34–43 (2016). https://doi.org/10.1016/j.ress.2015.12.009

    Article  Google Scholar 

  54. Lv, L., Zhang, K., Zhang, T., Li, X., Sun, Q., Zhang, L., Xue, W.: Eigenvector-based centralities for multilayer temporal networks under the framework of tensor computation. Expert Syst. Appl. 184, 115471 (2021). https://doi.org/10.1016/j.eswa.2021.115471

    Article  Google Scholar 

  55. Lian, X., Zhu, H., Zhang, X., Jin, Y., Zhou, H., He, B., Li, Z.: Recognition of typical environmental control behavior patterns of indoor occupants based on temporal series association analysis. Build. Environ. 234, 110170 (2023). https://doi.org/10.1016/j.buildenv.2023.110170

    Article  Google Scholar 

  56. Yürüşen, N.Y., Uzunoğlu, B., Talayero, A.P., Estopiñán, A.L.: Apriori and k-means algorithms of machine learning for spatio-temporal solar generation balancing. Renew. Energy 175, 702–717 (2021). https://doi.org/10.1016/j.renene.2021.04.098

    Article  Google Scholar 

  57. Lin, D.-I., Kedem, Z.M.: Pincer-search: an efficient algorithm for discovering the maximum frequent set. Ieee T Knowl Data En 14, 553–566 (2002). https://doi.org/10.1109/tkde.2002.1000342

    Article  Google Scholar 

  58. Pei, J., Han, J., Member, S., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.S.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE T Knowl Data En 16, 1424–1440 (2004). https://doi.org/10.1109/tkde.2004.77

    Article  Google Scholar 

  59. Wąs, T., Skibski, O.: Axiomatic characterization of PageRank. Artif. Intell. 318, 103900 (2023). https://doi.org/10.1016/j.artint.2023.103900

    Article  MathSciNet  Google Scholar 

  60. Liu, C., Wang, J., Xia, R.: Node importance evaluation in multi-platform avionics architecture based on TOPSIS and PageRank. EURASIP J. Adv. Signal Proc. (2023). https://doi.org/10.1186/s13634-023-00979-3

    Article  Google Scholar 

  61. Zhao, L., Yang, W., Wang, Z., Liang, Y., Zeng, Z.: Long-term safety evaluation of soft rock tunnel structure based on knowledge decision-making and data-driven models. Comput. Geotech. (2024). https://doi.org/10.1016/j.compgeo.2024.106244

    Article  Google Scholar 

  62. Kan, Z., Wei, Y., Zhao, T., Cao, J.: Risk evaluation of submarine pipelines in FMEA by combination of gray relation projection and VIKOR method. Ocean Eng. 302, 117695 (2024). https://doi.org/10.1016/j.oceaneng.2024.117695

    Article  Google Scholar 

  63. Wang, H.L., Zhao, X.F., Chen, H.J., Yi, K., Xie, W.C., Xu, Y.: Evaluation of toppling rock slopes using a composite cloud model with DEMATEL–CRITIC method. Water Sci. Eng. 16, 280–288 (2023). https://doi.org/10.1016/j.wse.2023.04.002

    Article  Google Scholar 

  64. Deshpande, K.V., Kumar, D.: Time and memory scalable algorithms for clustering tendency assessment of big data. Inf. Sci. (N Y) 664, 120324 (2024). https://doi.org/10.1016/j.ins.2024.120324

    Article  Google Scholar 

  65. Xie, X., Zhang, J., Lian, Y., Lin, K., Gao, X., Lan, T., Luo, J., Song, F.: Cloud model combined with multiple weighting methods to evaluate hydrological alteration and its contributing factors. J Hydrol (Amst) 610, 127794 (2022). https://doi.org/10.1016/j.jhydrol.2022.127794

    Article  Google Scholar 

  66. Zhao, Y., Kou, G., Peng, Y., Chen, Y.: Understanding influence power of opinion leaders in e-commerce networks: an opinion dynamics theory perspective. Inf Sci (N Y) 426, 131–147 (2018). https://doi.org/10.1016/j.ins.2017.10.031

    Article  MathSciNet  Google Scholar 

  67. Soleymani, M., Garcia, D., Jou, B., Schuller, B., Chang, S.F., Pantic, M.: A survey of multimodal sentiment analysis. Image Vis. Comput. 65, 3–14 (2017). https://doi.org/10.1016/j.imavis.2017.08.003

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 71672004).

Author information

Authors and Affiliations

Authors

Contributions

QC wrote the main manuscript text. ZT contributed the conceptualization and funding acquisition. DH performed the paper revisions. DZ contributed Supervision. JW performed the investigation. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Zhongjun Tang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Communicated by Qianqian Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Tang, Z., He, D. et al. A three-stage quality evaluation method for experience products: taking animation as an example. Multimedia Systems 30, 203 (2024). https://doi.org/10.1007/s00530-024-01401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-024-01401-0

Keywords