Skip to main content

Advertisement

Log in

Underwater image enhancement based on weighted guided filter image fusion

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

An underwater image enhancement technique based on weighted guided filter image fusion is proposed to address challenges, including optical absorption and scattering, color distortion, and uneven illumination. The method consists of three stages: color correction, local contrast enhancement, and fusion algorithm methods. In terms of color correction, basic correction is achieved through channel compensation and remapping, with saturation adjusted based on histogram distribution to enhance visual richness. For local contrast enhancement, the approach involves box filtering and a variational model to improve image saturation. Finally, the method utilizes weighted guided filter image fusion to achieve high visual quality underwater images. Additionally, our method outperforms eight state-of-the-art algorithms in no-reference metrics, demonstrating its effectiveness and innovation. We also conducted application tests and time comparisons to further validate the practicality of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Raveendran, S., Patil, M.D., Birajdar, G.K.: Underwater image enhancement: a comprehensive review, recent trends, challenges and applications. Artif. Intell. Rev. 54(7), 5413–5467 (2021). https://doi.org/10.1007/s10462-021-10025-z

    Article  Google Scholar 

  2. Yang, M., Hu, J., Li, C., Rohde, G., Du, Y., Hu, K.: An in-depth survey of underwater image enhancement and restoration. IEEE Access. 7, 123638–123657 (2019). https://doi.org/10.1109/ACCESS.2019.2932611

    Article  Google Scholar 

  3. Guo, P., He, L., Liu, S., Zeng, D., Liu, H.: Underwater image quality assessment: subjective and objective methods. IEEE Trans. Multimed. 24, 1980–1989 (2022). https://doi.org/10.1109/TMM.2021.3074825

    Article  Google Scholar 

  4. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Conf. Comp. Vision Pattern Recogn. Miami, FL: IEEE. 33, 2341 (2010)

    Google Scholar 

  5. Chiang, J.Y., Chen, Y.-C.: Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. (2012). https://doi.org/10.1109/TIP.2011.2179666

    Article  MathSciNet  Google Scholar 

  6. Drews, P., Jr., Do Nascimento, E., Moraes, F., Botelho, S., Campos, M.: Transmission Estimation in Underwater Single Images”. In: Botelho, S. (ed.) 2013 IEEE International Conference on Computer Vision Workshops. IEEE, Sydney, Australia (2013)

    Google Scholar 

  7. Galdran, A., Pardo, D., Picón, A., Alvarez-Gila, A.: Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 26, 132–145 (2015). https://doi.org/10.1016/j.jvcir.2014.11.006

    Article  Google Scholar 

  8. Berman, D., Levy, D., Avidan, S., Treibitz, T.: Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.2977624

    Article  Google Scholar 

  9. Zhou, J., Liu, Q., Jiang, Q., Ren, W., Lam, K.-M., Zhang, W.: Underwater camera: improving visual perception via adaptive dark pixel prior and color correction. Int. J. Comput. Vis. (2023). https://doi.org/10.1007/s11263-023-01853-3

    Article  Google Scholar 

  10. Marques, T.P., Branzan Albu, A.: L 2 UWE: A Framework for the Efficient Enhancement of Low-Light Underwater Images Using Local Contrast and Multi-Scale Fusion. In: Marques, T.P. (ed.) 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  11. Zhang, W., Dong, L., Zhang, T., Xu, W.: Enhancing underwater image via color correction and Bi-interval contrast enhancement. Signal Process. Image Commun. 90, 116030 (2021). https://doi.org/10.1016/j.image.2020.116030

    Article  Google Scholar 

  12. Ozturk, N., Ozturk, S.: Efficient and natural image fusion method for low-light images based on active contour model and adaptive gamma correction. Multimed. Tool. Appl. 83(16), 48437–48456 (2023). https://doi.org/10.1007/s11042-023-17141-8

    Article  Google Scholar 

  13. K. R. Joshi and R. S. Kamathe, 2008 “Quantification of retinex in enhancement of weather degraded images,” In: 2008 International Conference on Audio, Language and Image Processing, Shanghai, China IEEE. https://doi.org/10.1109/ICALIP.2008.4590120.

  14. Hummel, R.: Image enhancement by histogram transformation. Comput. Gr. Image Process. 6(2), 184–195 (1977). https://doi.org/10.1016/S0146-664X(77)80011-7

    Article  Google Scholar 

  15. Chang, Y., Jung, C., Ke, P., Song, H., Hwang, J.: Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access 6, 11782–11792 (2018). https://doi.org/10.1109/ACCESS.2018.2797872

    Article  Google Scholar 

  16. Ancuti, C., Ancuti, C.O., Haber, T., Bekaert, P.: “Enhancing underwater images and videos by fusion. In: Ancuti, C. (ed.) IEEE Conference on Computer Vision and Pattern Recognition. IEEE, London, Providence, RI (2012)

    Google Scholar 

  17. Bai, L., Zhang, W., Pan, X., Zhao, C.: Underwater Image enhancement based on global and local equalization of histogram and dual-image multi-scale fusion. IEEE Access 8, 128973–128990 (2020). https://doi.org/10.1109/ACCESS.2020.3009161

    Article  Google Scholar 

  18. Mishra, A.K., Choudhry, M.S., Kumar, M.: Underwater image enhancement using multiscale decomposition and gamma correction. Multimed. Tools. Appl. 82(10), 15715–15733 (2023). https://doi.org/10.1007/s11042-022-14008-2

    Article  Google Scholar 

  19. Ozturk, N., Ozturk, S.: A hybrid method for enhancement of both contrast distorted and low-light images. Int. J. Patt. Recogn. Artif. Intell. 37(08), 2354012 (2023). https://doi.org/10.1142/S0218001423540125

    Article  Google Scholar 

  20. Ghani, A.S.A., Isa, N.A.M.: Automatic system for improving underwater image contrast and color through recursive adaptive histogram modification. Comput. Electron. Agric. 141, 181–195 (2017). https://doi.org/10.1016/j.compag.2017.07.021

    Article  Google Scholar 

  21. Zhou, J., Wang, S., Lin, Z., Jiang, Q., Sohel, F.: A pixel distribution remapping and multi-prior retinex variational model for underwater image enhancement. IEEE Trans. Multimedia 26, 7838–7849 (2024). https://doi.org/10.1109/TMM.2024.3372400

    Article  Google Scholar 

  22. Huang, D., Wang, Y., Song, W., Sequeira, J., Mavromatis, S.: Shallow-Water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition. In: Huang, D. (ed.) MultiMedia Modeling. Springer International Publishing, London (2018)

    Google Scholar 

  23. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  24. Wang, Y., Zhang, J., Cao, Y., Wang, Z.: A deep CNN method for underwater image enhancement”. In: Wang, Y. (ed.) 2017 IEEE International Conference on Image Processing (ICIP). IEEE, London, Beijing (2017)

    Google Scholar 

  25. S. Anwar, C. Li, and F. Porikli, Deep Underwater Image Enhancement.” arXiv, Jul. 10, 2018. Accessed: 05 Apr 2024. [Online]. Available: http://arxiv.org/abs/1807.03528

  26. Steffens, C., Lilles Jorge Drews, P., Silva Botelho, S.: Deep Learning Based Exposure Correction for Image Exposure Correction with Application in Computer Vision for Robotics. In: Steffens, C. (ed.) 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE). IEEE, London, Joao Pessoa (2018)

    Google Scholar 

  27. Xie, Q., Gao, X., Liu, Z., Huang, H.: Underwater image enhancement based on zero-shot learning and level adjustment. Heliyon 9(4), e14442 (2023). https://doi.org/10.1016/j.heliyon.2023.e14442

    Article  Google Scholar 

  28. Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 98, 107038 (2020). https://doi.org/10.1016/j.patcog.2019.107038

    Article  Google Scholar 

  29. Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2020). https://doi.org/10.1109/TIP.2019.2955241

    Article  Google Scholar 

  30. Fu, X., Cao, X.: Underwater image enhancement with global–local networks and compressed-histogram equalization. Signal Process. Image Commun. 86, 115892 (2020). https://doi.org/10.1016/j.image.2020.115892

    Article  Google Scholar 

  31. Sun, B., Mei, Y., Yan, N., Chen, Y.: UMGAN: underwater image enhancement network for unpaired image-to-image translation. JMSE 11(2), 447 (2023). https://doi.org/10.3390/jmse11020447

    Article  Google Scholar 

  32. Zong, X., Chen, Z., Wang, D.: Local-CycleGAN: a general end-to-end network for visual enhancement in complex deep-water environment. Appl. Intell. 51(4), 1947–1958 (2021). https://doi.org/10.1007/s10489-020-01931-w

    Article  Google Scholar 

  33. Cai, X., Jiang, N., Chen, W., Hu, J., Zhao, T.: CURE-net: a cascaded deep network for underwater image enhancement. IEEE J. Oceanic Eng. 49(1), 226–236 (2024). https://doi.org/10.1109/JOE.2023.3245760

    Article  Google Scholar 

  34. Lin, S., Li, Z., Zheng, F., Zhao, Q., Li, S.: Underwater image enhancement based on adaptive color correction and improved retinex algorithm. IEEE Access. 11, 27620–27630 (2023). https://doi.org/10.1109/ACCESS.2023.3258698

    Article  Google Scholar 

  35. Lai, Y., et al.: Single underwater image enhancement based on differential attenuation compensation. Front. Mar. Sci. 9, 1047053 (2022). https://doi.org/10.3389/fmars.2022.1047053

    Article  Google Scholar 

  36. Li, X., Hou, G., Tan, L., Liu, W.: A hybrid framework for underwater image enhancement. IEEE Access 8, 197448–197462 (2020). https://doi.org/10.1109/ACCESS.2020.3034275

    Article  Google Scholar 

  37. Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Bekaert, P.: Color balance and fusion for underwater image enhancement. IEEE Trans.Image Process. 27(1), 379–393 (2018). https://doi.org/10.1109/TIP.2017.2759252

    Article  MathSciNet  Google Scholar 

  38. Zhang, W., et al.: Underwater image enhancement via weighted wavelet visual perception fusion. IEEE Trans. Circuits Syst. Video Technol. (2024). https://doi.org/10.1109/TCSVT.2023.3299314

    Article  Google Scholar 

  39. Zhou, J., Pang, L., Zhang, D., Zhang, W.: Underwater image enhancement method via multi-interval subhistogram perspective equalization. IEEE J. Oceanic Eng. 48(2), 474–488 (2023). https://doi.org/10.1109/JOE.2022.3223733

    Article  Google Scholar 

  40. Bavirisetti, D.P., Xiao, G., Zhao, J., Dhuli, R., Liu, G.: Multi-scale guided image and video fusion: a fast and efficient approach. Circuits. Syst. Signal Process. 38(12), 5576–5605 (2019). https://doi.org/10.1007/s00034-019-01131-z

    Article  Google Scholar 

  41. Zhang, W., Wang, Y., Li, C.: Underwater image enhancement by attenuated color channel correction and detail preserved contrast enhancement. IEEE J. Oceanic Eng. 47(3), 718–735 (2022). https://doi.org/10.1109/JOE.2022.3140563

    Article  Google Scholar 

  42. Fu, X., Zhuang, P., Huang, Y., Liao, Y., Zhang, X.P., Ding, X.: A retinex-based enhancing approach for single underwater image. In: Fu, X. (ed.) IEEE International Conference on Image Processing (ICIP). IEEE, London, Paris, France (2014)

    Google Scholar 

  43. Wang, S., Chen, Z., Wang, H.: Multi-weight and multi-granularity fusion of underwater image enhancement. Earth. Sci. Inform. 15(3), 1647–1657 (2022). https://doi.org/10.1007/s12145-022-00804-9

    Article  Google Scholar 

  44. Zhuang, P., Li, C., Wu, J.: Bayesian retinex underwater image enhancement. Eng. Appl. Artif. Intell. 101, 104171 (2021). https://doi.org/10.1016/j.engappai.2021.104171

    Article  Google Scholar 

  45. Kang, Y., Jiang, Q., Li, C., Ren, W., Liu, H., Wang, P.: A perception-aware decomposition and fusion framework for underwater image enhancement. IEEE Trans. Circuits Syst. Video Technol. 33(3), 988–1002 (2023). https://doi.org/10.1109/TCSVT.2022.3208100

    Article  Google Scholar 

  46. Li, C.-Y., Guo, J.-C., Cong, R.-M., Pang, Y.-W., Wang, B.: underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. on Image Process. 25(12), 5664–5677 (2016). https://doi.org/10.1109/TIP.2016.2612882

    Article  MathSciNet  Google Scholar 

  47. X. Li, G. Hou, K. Li, and Z. Pan, “Enhancing Underwater Image via Adaptive Color and Contrast Enhancement, and Denoising.” arXiv, Aug. 02, 2021. Accessed: 05 Apr 2024. Available: http://arxiv.org/abs/2104.01073

  48. Zhou, J., et al.: HCLR-net: hybrid contrastive learning regularization with locally randomized perturbation for underwater image enhancement. Int. J. Comput. Vis. (2024). https://doi.org/10.1007/s11263-024-01987-y

    Article  Google Scholar 

  49. Zhang, W., Dong, L., Pan, X., Zhou, J., Qin, L., Xu, W.: Single image defogging based on multi-channel convolutional MSRCR. IEEE Access. 7, 72492–72504 (2019). https://doi.org/10.1109/ACCESS.2019.2920403

    Article  Google Scholar 

  50. Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. on Image Process. 24(12), 6062–6071 (2015). https://doi.org/10.1109/TIP.2015.2491020

    Article  MathSciNet  Google Scholar 

  51. Wang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W.: A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process. Lett. 22(12), 2387–2390 (2015). https://doi.org/10.1109/LSP.2015.2487369

    Article  Google Scholar 

  52. Korhonen, J., You, J.: “Peak signal-to-noise ratio revisited: Is simple beautiful?”, in 2012 Fourth International Workshop on Quality of Multimedia Experience. IEEE, Melbourne, Australia (2012)

    Google Scholar 

Download references

Funding

This work was supported by Special projects in universities' key fields of Guangdong Province (2023ZDZX3017), 2022 Tertiary Education Scientific research project of Guangzhou Municipal Education Bureau (202234607), the National Natural Science Foundation of China (52371059) and (52101358). The General Universities' Key Scientific Research Platform Project of Guangdong Province(2023KSYS009).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Dan Xiang, Huihua Wang, Hao Zhao,Zebin Zhou and Pan Gao. The firstdraft of the manuscript was written by Huihua Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hao Zhao or Pan Gao.

Ethics declarations

Conflict of interest

The authors declare that there are no conficts of interest related to this article.

Additional information

Communicated by Qiu Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, D., Wang, H., Zhou, Z. et al. Underwater image enhancement based on weighted guided filter image fusion. Multimedia Systems 30, 240 (2024). https://doi.org/10.1007/s00530-024-01432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-024-01432-7

Keywords