Abstract
In clinical practice, accurate dental plaque segmentation plays an important role in the diagnosis of oral problems such as dental caries and periodontitis. Existing methods consistently exhibit undesired structural distortions owing to the intensive variations in shape and the ambiguous boundaries of the plaques. In this paper, we introduce a Structure-Preserving Dynamic Complementary Interaction Network (SPDINet) that facilitates complementary information interaction between main plaque segmentation sub-network and auxiliary boundary sub-network to address this problem. Mutual-attention module (MA) and gradient guided refinement module (GGR) achieve this dynamic interaction at the feature level and result level, so as to preserve perceptual-pleasant details and further avoid structural distortion for plaque segmentation. In MA module, A bi-directional cross-task Mutual-attention mechanism reduces misleading attentions and distributes attention responses to emphasize parts that one task overlook while another task highlights. In GGR module, gradient boundaries derived from mask prediction category-wisely refine the boundary probability map to generate a more accurate boundary around the object, which in turns significantly boosts the performance of segmentation and implicitly implements the information interaction. Experiments on two recent dental plaque segmentation datasets, including SDPSeg-S and SDPSeg-C, show SPDINet establishes new state-of-the-art results.








Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
References
Takahashi, N., Nyvad, B.: The role of bacteria in the caries process: ecological perspectives. J. Dental Res. 90(3), 294–303 (2011)
Pruntel, S., Van Munster, B., De Vries, J., Vissink, A., Visser, A.: Oral health as a risk factor for alzheimer disease. J. Prevent. Alzheimer’s Dis. 11(1), 249–258 (2024)
Struppek, J., Schnabel, R.B., Walther, C., Heydecke, G., Seedorf, U., Lamprecht, R., Smeets, R., Borof, K., Zeller, T., Beikler, T., et al.: Periodontitis, dental plaque, and atrial fibrillation in the hamburg city health study. PLoS One 16(11), 0259652 (2021)
Konkel, J.E., O’Boyle, C., Krishnan, S.: Distal consequences of oral inflammation. Front. Immunol. 10, 431939 (2019)
Michaud, D., Kelsey, K., Papathanasiou, E., Genco, C., Giovannucci, E.: Periodontal disease and risk of all cancers among male never smokers: an updated analysis of the health professionals follow-up study. Ann. Oncol. 27(5), 941–947 (2016)
Fasoulas, A., Pavlidou, E., Petridis, D., Mantzorou, M., Seroglou, K., Giaginis, C.: Detection of dental plaque with disclosing agents in the context of preventive oral hygiene training programs. Heliyon 5(7) (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-assisted intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241 (2015). Springer
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205–218 (2022). Springer
Fang, Y., Chen, C., Yuan, Y., Tong, K.-y.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I 22, pp. 302–310 (2019). Springer
Wang, R., Chen, S., Ji, C., Fan, J., Li, Y.: Boundary-aware context neural network for medical image segmentation. Med. Image Anal. 78, 102395 (2022)
Shi, J., Sun, B., Ye, X., Wang, Z., Luo, X., Liu, J., Gao, H., Li, H.: Semantic decomposition network with contrastive and structural constraints for dental plaque segmentation. IEEE Trans. Med. Imaging 42(4), 935–946 (2022)
Lin, Y., Zhang, D., Fang, X., Chen, Y., Cheng, K.-T., Chen, H.: Rethinking boundary detection in deep learning models for medical image segmentation. In: International Conference on Information Processing in Medical Imaging, pp. 730–742 (2023). Springer
Bhattarai, B., Subedi, R., Gaire, R.R., Vazquez, E., Stoyanov, D.: Histogram of oriented gradients meet deep learning: a novel multi-task deep network for 2d surgical image semantic segmentation. Med. Image Anal. 85, 102747 (2023)
Ta, N., Chen, H., Liu, X., Jin, N.: Let-net: locally enhanced transformer network for medical image segmentation. Multim. Syst. 29(6), 3847–3861 (2023)
Qin, C., Wang, Y., Zhang, J.: Cmlcnet: medical image segmentation network based on convolution capsule encoder and multi-scale local co-occurrence. Multim. Syst. 30(4), 220 (2024)
Yang, S., Zhang, X., He, Y., Chen, Y., Zhou, Y.: Tbe-net: a deep network based on tree-like branch encoder for medical image segmentation. IEEE J. Biomed. Health Inform. 29(1), 521–534 (2025)
Mikołajczyk, A., Majchrowska, S., Carrasco Limeros, S.: The (de) biasing effect of gan-based augmentation methods on skin lesion images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 437–447 (2022). Springer
Xu, R., Wang, C., Zhang, J., Xu, S., Meng, W., Zhang, X.: Skinformer: learning statistical texture representation with transformer for skin lesion segmentation. IEEE J. Biomed. Health Inform. 28(10), 6008–6018 (2024)
Nan, Y., Ser, J.D., Tang, Z., Tang, P., Xing, X., Fang, Y., Herrera, F., Pedrycz, W., Walsh, S., Yang, G.: Fuzzy attention neural network to tackle discontinuity in airway segmentation. IEEE Trans. Neural Netw. Learn. Syst. 35(6), 7391–7404 (2024)
Nan, Y., Ser, J.D., Tang, Z., Tang, P., Xing, X., Fang, Y., Herrera, F., Pedrycz, W., Walsh, S., Yang, G.: Fuzzy attention neural network to tackle discontinuity in airway segmentation. IEEE Trans. Neural Netw. Learn. Syst. 35(6), 7391–7404 (2024)
Andrearczyk, V., Oreiller, V., Boughdad, S., Le Rest, C.C., Tankyevych, O., Elhalawani, H., Jreige, M., Prior, J.O., Vallières, M., Visvikis, D., et al.: Automatic head and neck tumor segmentation and outcome prediction relying on fdg-pet/ct images: findings from the second edition of the hecktor challenge. Med. Image Anal. 90, 102972 (2023)
Wu, D., Tao, J., Qin, Z., Mumtaz, R.A., Qin, J., Yu, L., Courtney, J.: Lightnet: a novel lightweight convolutional network for brain tumor segmentation in healthcare. IEEE J. Biomed. Health Inform. 28(8), 4471–4482 (2024)
Li, S., Pang, Z., Song, W., Guo, Y., You, W., Hao, A., Qin, H.: Low-shot learning of automatic dental plaque segmentation based on local-to-global feature fusion. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 664–668 (2020). IEEE
Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1704–1711 (2010). IEEE
Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Computer Vision-ECCV 2000: 6th European Conference on Computer Vision Dublin, Ireland, June 26–July 1, 2000 Proceedings, Part I 6, pp. 404–420 (2000). Springer
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society (2016)
Gu, Z., Cheng, J., Fu, H., Zhou, K., Hao, H., Zhao, Y., Zhang, T., Gao, S., Liu, J.: Ce-net: context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)
Feng, S., Zhao, H., Shi, F., Cheng, X., Wang, M., Ma, Y., Xiang, D., Zhu, W., Chen, X.: Cpfnet: context pyramid fusion network for medical image segmentation. IEEE Trans. Med. Imaging 39(10), 3008–3018 (2020)
Kareem, D.N.A., Fiaz, M., Novershtern, N., Cholakkal, H.: Medical image segmentation using directional window attention. In: IEEE International Symposium on Biomedical Imaging, ISBI 2024, Athens, Greece, May 27-30, 2024, pp. 1–5. IEEE (2024)
Zhang, Y., Dong, J.: Maef-net: MLP attention for feature enhancement in u-net based medical image segmentation networks. IEEE J. Biomed. Health Inform. 28(2), 846–857 (2024)
Tan, Y., Shen, W., Wu, M., Liu, G., Zhao, S., Chen, Y., Yang, K., Li, Y.: Retinal layer segmentation in OCT images with boundary regression and feature polarization. IEEE Trans. Med. Imaging 43(2), 686–700 (2024)
Yu, L., Min, W., Wang, S.: Boundary-aware gradient operator network for medical image segmentation. IEEE J. Biomed. Health Inform. 28(8), 4711–4723 (2024)
Wang, B., Wei, W., Qiu, S., Wang, S., Li, D., He, H.: Boundary aware u-net for retinal layers segmentation in optical coherence tomography images. IEEE J. Biomed. Health Inform. 25(8), 3029–3040 (2021)
Huang, R., Lin, M., Dou, H., Lin, Z., Ying, Q., Jia, X., Xu, W., Mei, Z., Yang, X., Dong, Y., Zhou, J., Ni, D.: Boundary-rendering network for breast lesion segmentation in ultrasound images. Med. Image Anal. 80, 102478 (2022)
Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-net: going deeper with nested u-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)
Acuna, D., Kar, A., Fidler, S.: Devil is in the edges: learning semantic boundaries from noisy annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11075–11083 (2019)
Diederik, P.K.: Adam: a method for stochastic optimization (2014)
Chen, Y., Wang, K., Liao, X., Qian, Y., Wang, Q., Yuan, Z., Heng, P.-A.: Channel-unet: a spatial channel-wise convolutional neural network for liver and tumors segmentation. Front. Genet. 10, 1110 (2019)
Valanarasu, J.M.J., Sindagi, V.A., Hacihaliloglu, I., Patel, V.M.: Kiu-net: Towards accurate segmentation of biomedical images using over-complete representations. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV 23, pp. 363–373 (2020). Springer
Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation (2021). arXiv preprint arXiv:2102.04306
Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: Gated axial-attention for medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, pp. 36–46 (2021). Springer
Ruan, J., Xiang, S.: Vm-unet: vision mamba unet for medical image segmentation (2024). CoRR arXiv: 2402.02491
Fan, D.-P., Ji, G.-P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet: parallel reverse attention network for polyp segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 263–273 (2020). Springer
Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention network for polyp segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, pp. 699–708 (2021). Springer
Zhao, X., Zhang, L., Lu, H.: Automatic polyp segmentation via multi-scale subtraction network. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, pp. 120–130 (2021). Springer
Yin, Z., Liang, K., Ma, Z., Guo, J.: Duplex contextual relation network for polyp segmentation. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2022). IEEE
Hu, K., Chen, W., Sun, Y., Hu, X., Zhou, Q., Zheng, Z.: Ppnet: pyramid pooling based network for polyp segmentation. Comput. Biol. Med. 160, 107028 (2023)
Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., De Lange, T., Johansen, D., Johansen, H.D.: Kvasir-seg: a segmented polyp dataset. In: MultiMedia Modeling: 26th International Conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part II 26, pp. 451–462 (2020). Springer
Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: Wm-dova maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)
Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)
Vázquez, D., Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., López, A.M., Romero, A., Drozdzal, M., Courville, A.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017(1), 4037190 (2017)
Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)
Author information
Authors and Affiliations
Contributions
J.S: responsible for the overall experiments and writing of the paper. B.S: contributed to partial writing and revisions of the paper and experiments. R.X, T.Y, H.L: provided revisions, guidance, and oversight of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Communicated by Yu Xue.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shi, J., Xu, R., Sun, B. et al. Structure-preserving dental plaque segmentation via dynamically complementary information interaction. Multimedia Systems 31, 157 (2025). https://doi.org/10.1007/s00530-025-01727-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00530-025-01727-3