Skip to main content

Advertisement

Log in

Structure-preserving dental plaque segmentation via dynamically complementary information interaction

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In clinical practice, accurate dental plaque segmentation plays an important role in the diagnosis of oral problems such as dental caries and periodontitis. Existing methods consistently exhibit undesired structural distortions owing to the intensive variations in shape and the ambiguous boundaries of the plaques. In this paper, we introduce a Structure-Preserving Dynamic Complementary Interaction Network (SPDINet) that facilitates complementary information interaction between main plaque segmentation sub-network and auxiliary boundary sub-network to address this problem. Mutual-attention module (MA) and gradient guided refinement module (GGR) achieve this dynamic interaction at the feature level and result level, so as to preserve perceptual-pleasant details and further avoid structural distortion for plaque segmentation. In MA module, A bi-directional cross-task Mutual-attention mechanism reduces misleading attentions and distributes attention responses to emphasize parts that one task overlook while another task highlights. In GGR module, gradient boundaries derived from mask prediction category-wisely refine the boundary probability map to generate a more accurate boundary around the object, which in turns significantly boosts the performance of segmentation and implicitly implements the information interaction. Experiments on two recent dental plaque segmentation datasets, including SDPSeg-S and SDPSeg-C, show SPDINet establishes new state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Takahashi, N., Nyvad, B.: The role of bacteria in the caries process: ecological perspectives. J. Dental Res. 90(3), 294–303 (2011)

    MATH  Google Scholar 

  2. Pruntel, S., Van Munster, B., De Vries, J., Vissink, A., Visser, A.: Oral health as a risk factor for alzheimer disease. J. Prevent. Alzheimer’s Dis. 11(1), 249–258 (2024)

    Google Scholar 

  3. Struppek, J., Schnabel, R.B., Walther, C., Heydecke, G., Seedorf, U., Lamprecht, R., Smeets, R., Borof, K., Zeller, T., Beikler, T., et al.: Periodontitis, dental plaque, and atrial fibrillation in the hamburg city health study. PLoS One 16(11), 0259652 (2021)

    Google Scholar 

  4. Konkel, J.E., O’Boyle, C., Krishnan, S.: Distal consequences of oral inflammation. Front. Immunol. 10, 431939 (2019)

    Google Scholar 

  5. Michaud, D., Kelsey, K., Papathanasiou, E., Genco, C., Giovannucci, E.: Periodontal disease and risk of all cancers among male never smokers: an updated analysis of the health professionals follow-up study. Ann. Oncol. 27(5), 941–947 (2016)

    Google Scholar 

  6. Fasoulas, A., Pavlidou, E., Petridis, D., Mantzorou, M., Seroglou, K., Giaginis, C.: Detection of dental plaque with disclosing agents in the context of preventive oral hygiene training programs. Heliyon 5(7) (2019)

  7. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-assisted intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241 (2015). Springer

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Google Scholar 

  9. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205–218 (2022). Springer

  10. Fang, Y., Chen, C., Yuan, Y., Tong, K.-y.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I 22, pp. 302–310 (2019). Springer

  11. Wang, R., Chen, S., Ji, C., Fan, J., Li, Y.: Boundary-aware context neural network for medical image segmentation. Med. Image Anal. 78, 102395 (2022)

    MATH  Google Scholar 

  12. Shi, J., Sun, B., Ye, X., Wang, Z., Luo, X., Liu, J., Gao, H., Li, H.: Semantic decomposition network with contrastive and structural constraints for dental plaque segmentation. IEEE Trans. Med. Imaging 42(4), 935–946 (2022)

    MATH  Google Scholar 

  13. Lin, Y., Zhang, D., Fang, X., Chen, Y., Cheng, K.-T., Chen, H.: Rethinking boundary detection in deep learning models for medical image segmentation. In: International Conference on Information Processing in Medical Imaging, pp. 730–742 (2023). Springer

  14. Bhattarai, B., Subedi, R., Gaire, R.R., Vazquez, E., Stoyanov, D.: Histogram of oriented gradients meet deep learning: a novel multi-task deep network for 2d surgical image semantic segmentation. Med. Image Anal. 85, 102747 (2023)

    Google Scholar 

  15. Ta, N., Chen, H., Liu, X., Jin, N.: Let-net: locally enhanced transformer network for medical image segmentation. Multim. Syst. 29(6), 3847–3861 (2023)

    MATH  Google Scholar 

  16. Qin, C., Wang, Y., Zhang, J.: Cmlcnet: medical image segmentation network based on convolution capsule encoder and multi-scale local co-occurrence. Multim. Syst. 30(4), 220 (2024)

    MATH  Google Scholar 

  17. Yang, S., Zhang, X., He, Y., Chen, Y., Zhou, Y.: Tbe-net: a deep network based on tree-like branch encoder for medical image segmentation. IEEE J. Biomed. Health Inform. 29(1), 521–534 (2025)

    MATH  Google Scholar 

  18. Mikołajczyk, A., Majchrowska, S., Carrasco Limeros, S.: The (de) biasing effect of gan-based augmentation methods on skin lesion images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 437–447 (2022). Springer

  19. Xu, R., Wang, C., Zhang, J., Xu, S., Meng, W., Zhang, X.: Skinformer: learning statistical texture representation with transformer for skin lesion segmentation. IEEE J. Biomed. Health Inform. 28(10), 6008–6018 (2024)

    MATH  Google Scholar 

  20. Nan, Y., Ser, J.D., Tang, Z., Tang, P., Xing, X., Fang, Y., Herrera, F., Pedrycz, W., Walsh, S., Yang, G.: Fuzzy attention neural network to tackle discontinuity in airway segmentation. IEEE Trans. Neural Netw. Learn. Syst. 35(6), 7391–7404 (2024)

    Google Scholar 

  21. Nan, Y., Ser, J.D., Tang, Z., Tang, P., Xing, X., Fang, Y., Herrera, F., Pedrycz, W., Walsh, S., Yang, G.: Fuzzy attention neural network to tackle discontinuity in airway segmentation. IEEE Trans. Neural Netw. Learn. Syst. 35(6), 7391–7404 (2024)

    Google Scholar 

  22. Andrearczyk, V., Oreiller, V., Boughdad, S., Le Rest, C.C., Tankyevych, O., Elhalawani, H., Jreige, M., Prior, J.O., Vallières, M., Visvikis, D., et al.: Automatic head and neck tumor segmentation and outcome prediction relying on fdg-pet/ct images: findings from the second edition of the hecktor challenge. Med. Image Anal. 90, 102972 (2023)

  23. Wu, D., Tao, J., Qin, Z., Mumtaz, R.A., Qin, J., Yu, L., Courtney, J.: Lightnet: a novel lightweight convolutional network for brain tumor segmentation in healthcare. IEEE J. Biomed. Health Inform. 28(8), 4471–4482 (2024)

    Google Scholar 

  24. Li, S., Pang, Z., Song, W., Guo, Y., You, W., Hao, A., Qin, H.: Low-shot learning of automatic dental plaque segmentation based on local-to-global feature fusion. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 664–668 (2020). IEEE

  25. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1704–1711 (2010). IEEE

  26. Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Computer Vision-ECCV 2000: 6th European Conference on Computer Vision Dublin, Ireland, June 26–July 1, 2000 Proceedings, Part I 6, pp. 404–420 (2000). Springer

  27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society (2016)

  28. Gu, Z., Cheng, J., Fu, H., Zhou, K., Hao, H., Zhao, Y., Zhang, T., Gao, S., Liu, J.: Ce-net: context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Google Scholar 

  29. Feng, S., Zhao, H., Shi, F., Cheng, X., Wang, M., Ma, Y., Xiang, D., Zhu, W., Chen, X.: Cpfnet: context pyramid fusion network for medical image segmentation. IEEE Trans. Med. Imaging 39(10), 3008–3018 (2020)

    Google Scholar 

  30. Kareem, D.N.A., Fiaz, M., Novershtern, N., Cholakkal, H.: Medical image segmentation using directional window attention. In: IEEE International Symposium on Biomedical Imaging, ISBI 2024, Athens, Greece, May 27-30, 2024, pp. 1–5. IEEE (2024)

  31. Zhang, Y., Dong, J.: Maef-net: MLP attention for feature enhancement in u-net based medical image segmentation networks. IEEE J. Biomed. Health Inform. 28(2), 846–857 (2024)

    MATH  Google Scholar 

  32. Tan, Y., Shen, W., Wu, M., Liu, G., Zhao, S., Chen, Y., Yang, K., Li, Y.: Retinal layer segmentation in OCT images with boundary regression and feature polarization. IEEE Trans. Med. Imaging 43(2), 686–700 (2024)

    MATH  Google Scholar 

  33. Yu, L., Min, W., Wang, S.: Boundary-aware gradient operator network for medical image segmentation. IEEE J. Biomed. Health Inform. 28(8), 4711–4723 (2024)

    MATH  Google Scholar 

  34. Wang, B., Wei, W., Qiu, S., Wang, S., Li, D., He, H.: Boundary aware u-net for retinal layers segmentation in optical coherence tomography images. IEEE J. Biomed. Health Inform. 25(8), 3029–3040 (2021)

    MATH  Google Scholar 

  35. Huang, R., Lin, M., Dou, H., Lin, Z., Ying, Q., Jia, X., Xu, W., Mei, Z., Yang, X., Dong, Y., Zhou, J., Ni, D.: Boundary-rendering network for breast lesion segmentation in ultrasound images. Med. Image Anal. 80, 102478 (2022)

    MATH  Google Scholar 

  36. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-net: going deeper with nested u-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)

    Google Scholar 

  37. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)

  38. Acuna, D., Kar, A., Fidler, S.: Devil is in the edges: learning semantic boundaries from noisy annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11075–11083 (2019)

  39. Diederik, P.K.: Adam: a method for stochastic optimization (2014)

  40. Chen, Y., Wang, K., Liao, X., Qian, Y., Wang, Q., Yuan, Z., Heng, P.-A.: Channel-unet: a spatial channel-wise convolutional neural network for liver and tumors segmentation. Front. Genet. 10, 1110 (2019)

    MATH  Google Scholar 

  41. Valanarasu, J.M.J., Sindagi, V.A., Hacihaliloglu, I., Patel, V.M.: Kiu-net: Towards accurate segmentation of biomedical images using over-complete representations. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV 23, pp. 363–373 (2020). Springer

  42. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation (2021). arXiv preprint arXiv:2102.04306

  43. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: Gated axial-attention for medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, pp. 36–46 (2021). Springer

  44. Ruan, J., Xiang, S.: Vm-unet: vision mamba unet for medical image segmentation (2024). CoRR arXiv: 2402.02491

  45. Fan, D.-P., Ji, G.-P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet: parallel reverse attention network for polyp segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 263–273 (2020). Springer

  46. Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention network for polyp segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, pp. 699–708 (2021). Springer

  47. Zhao, X., Zhang, L., Lu, H.: Automatic polyp segmentation via multi-scale subtraction network. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, pp. 120–130 (2021). Springer

  48. Yin, Z., Liang, K., Ma, Z., Guo, J.: Duplex contextual relation network for polyp segmentation. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2022). IEEE

  49. Hu, K., Chen, W., Sun, Y., Hu, X., Zhou, Q., Zheng, Z.: Ppnet: pyramid pooling based network for polyp segmentation. Comput. Biol. Med. 160, 107028 (2023)

    MATH  Google Scholar 

  50. Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., De Lange, T., Johansen, D., Johansen, H.D.: Kvasir-seg: a segmented polyp dataset. In: MultiMedia Modeling: 26th International Conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part II 26, pp. 451–462 (2020). Springer

  51. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: Wm-dova maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

  52. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)

    MATH  Google Scholar 

  53. Vázquez, D., Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., López, A.M., Romero, A., Drozdzal, M., Courville, A.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017(1), 4037190 (2017)

    Google Scholar 

  54. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.S: responsible for the overall experiments and writing of the paper. B.S: contributed to partial writing and revisions of the paper and experiments. R.X, T.Y, H.L: provided revisions, guidance, and oversight of the manuscript.

Corresponding author

Correspondence to Zhihui Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Yu Xue.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Xu, R., Sun, B. et al. Structure-preserving dental plaque segmentation via dynamically complementary information interaction. Multimedia Systems 31, 157 (2025). https://doi.org/10.1007/s00530-025-01727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-025-01727-3

Keywords