Skip to main content

Advertisement

Log in

Adaptive color-corrected multicolor space enhancement network for underwater image enhancement

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The complex underwater environment often leads to significant image degradation, such as color distortion, low contrast, and poor visibility, which severely impacts the performance of underwater vision tasks. Existing underwater image enhancement (UIE) methods are typically designed for specific degradation conditions and exhibit limited adaptability to varying underwater environments. To address the challenges posed by diverse degradation conditions, we propose an Adaptive Color-Corrected Multicolor Space Enhancement Network (CCMSE-Net). The CCMSE-Net decomposes the UIE task into two stages: color correction and visibility enhancement, corresponding to an adaptive color correction subnetwork (ACC-Net) and a multicolor space enhancement subnetwork (MCSE-Net), respectively. The MCSE-Net achieves multicolor space feature enhancement by applying the multiscale Retinex (MSR) model to the RGB color space and incorporating a feature extraction module (FEM) for the Lab and HSV color spaces. The fusion of multicolor space features is facilitated by the convolutional residual spatial self-attention block (CRSAB), which effectively captures both local details and global context. Experimental results demonstrate that the CCMSE-Net significantly enhances underwater image quality both quantitatively and qualitatively, offering a robust and adaptable solution for diverse underwater environments. Additionally, the enhanced images substantially improve the performance of downstream underwater vision tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Xu, S., Wang, J., He, N., Hu, X., Sun, F.: Underwater image enhancement method based on a cross attention mechanism. Multimed. Syst. 30(1), 26 (2024). https://doi.org/10.1007/s00530-023-01224-5

    Article  Google Scholar 

  2. Chiang, J.Y., Chen, Y.-C.: Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 21(4), 1756–1769 (2011). https://doi.org/10.1109/TIP.2011.2179666

    Article  MathSciNet  Google Scholar 

  3. Xiang, D., Wang, H., Zhou, Z., Zhao, H., Gao, P., Zhang, J., Shan, C.: Underwater image enhancement based on weighted guided filter image fusion. Multimed. Syst. 30(5), 240 (2024). https://doi.org/10.1007/s00530-024-01432-7

    Article  Google Scholar 

  4. Zhang, W., Wang, Y., Li, C.: Underwater image enhancement by attenuated color channel correction and detail preserved contrast enhancement. IEEE J. Ocean. Eng. 47(3), 718–735 (2022). https://doi.org/10.1109/JOE.2022.3140563

    Article  Google Scholar 

  5. Wang, J., Wan, M., Xu, Y., Kong, X., Gu, G., Chen, Q.: Underwater image restoration via constrained color compensation and background light color space-based haze-line model. IEEE Trans. Geosci. Remote Sens. 62, 1–15 (2024). https://doi.org/10.1109/TGRS.2024.3477911

    Article  Google Scholar 

  6. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977). https://doi.org/10.1038/scientificamerican1277-108

    Article  Google Scholar 

  7. Fu, X., Zhuang, P., Huang, Y., Liao, Y., Zhang, X.-P., Ding, X.: A retinex-based enhancing approach for single underwater image. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4572–4576 (2014). https://doi.org/10.1109/ICIP.2014.7025927

  8. Zhuang, P., Wu, J., Porikli, F., Li, C.: Underwater image enhancement with hyper-Laplacian reflectance priors. IEEE Trans. Image Process. 31, 5442–5455 (2022). https://doi.org/10.1109/TIP.2022.3196546

    Article  Google Scholar 

  9. Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S., Tao, D.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019). https://doi.org/10.1109/TIP.2019.2955241

    Article  Google Scholar 

  10. Jiang, Z., Li, Z., Yang, S., Fan, X., Liu, R.: Target oriented perceptual adversarial fusion network for underwater image enhancement. IEEE Trans. Circuits Syst. Video Technol. 32(10), 6584–6598 (2022). https://doi.org/10.1109/TCSVT.2022.3174817

    Article  Google Scholar 

  11. Huang, Z., Li, J., Hua, Z., Fan, L.: Underwater image enhancement via adaptive group attention-based multiscale cascade transformer. IEEE Trans. Instrum. Meas. 71, 1–18 (2022). https://doi.org/10.1109/TIM.2022.3189630

    Article  Google Scholar 

  12. Rahman, Z.-U., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing, 3, pp. 1003–1006 (1996). https://doi.org/10.1109/ICIP.1996.560995

  13. Li, C., Anwar, S., Hou, J., Cong, R., Guo, C., Ren, W.: Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Trans. Image Process. 30, 4985–5000 (2021). https://doi.org/10.1109/TIP.2021.3076367

    Article  Google Scholar 

  14. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010). https://doi.org/10.1109/TPAMI.2010.168

    Article  Google Scholar 

  15. Yang, H.-Y., Chen, P.-Y., Huang, C.-C., Zhuang, Y.-Z., Shiau, Y.-H.: Low complexity underwater image enhancement based on dark channel prior. In: 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications. IEEE, pp. 17–20 (2011). https://doi.org/10.1109/IBICA.2011.9

  16. Drews, P., Nascimento, E., Moraes, F., Botelho, S., Campos, M.: Transmission estimation in underwater single images. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 825–830 (2013). https://doi.org/10.1109/ICCVW.2013.113

  17. Peng, Y.-T., Cao, K., Cosman, P.C.: Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 27(6), 2856–2868 (2018). https://doi.org/10.1109/TIP.2018.2813092

    Article  MathSciNet  Google Scholar 

  18. Liang, Z., Ding, X., Wang, Y., Yan, X., Fu, X.: Gudcp: Generalization of underwater dark channel prior for underwater image restoration. IEEE Trans. Circuits Syst. Video Technol. 32(7), 4879–4884 (2021). https://doi.org/10.1109/TCSVT.2021.3114230

    Article  Google Scholar 

  19. Yang, M., Sowmya, A., Wei, Z., Zheng, B.: Offshore underwater image restoration using reflection-decomposition-based transmission map estimation. IEEE J. Ocean. Eng. 45(2), 521–533 (2019). https://doi.org/10.1109/JOE.2018.2886093

    Article  Google Scholar 

  20. Peng, Y.-T., Cosman, P.C.: Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 26(4), 1579–1594 (2017). https://doi.org/10.1109/TIP.2017.2663846

    Article  MathSciNet  Google Scholar 

  21. Zhou, Y., Wu, Q., Yan, K., Feng, L., Xiang, W.: Underwater image restoration using color-line model. IEEE Trans. Circuits Syst. Video Technol. 29(3), 907–911 (2018). https://doi.org/10.1109/TCSVT.2018.2884615

    Article  Google Scholar 

  22. Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. In: 2010 IEEE International Conference on Systems, Man and Cybernetics, pp. 1703–1709 (2010). https://doi.org/10.1109/ICSMC.2010.5642311

  23. Ancuti, C., Ancuti, C.O., Haber, T., Bekaert, P.: Enhancing underwater images and videos by fusion. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 81–88 (2012). https://doi.org/10.1109/CVPR.2012.6247661

  24. Zhou, J., Wei, X., Shi, J., Chu, W., Zhang, W.: Underwater image enhancement method with light scattering characteristics. Comput. Electr. Eng. 100, 107898 (2022). https://doi.org/10.1016/j.compeleceng.2022.107898

    Article  Google Scholar 

  25. Zhang, S., Wang, T., Dong, J., Yu, H.: Underwater image enhancement via extended multi-scale retinex. Neurocomputing 245, 1–9 (2017). https://doi.org/10.1016/j.neucom.2017.03.029

    Article  Google Scholar 

  26. Zhuang, P., Ding, X.: Underwater image enhancement using an edge-preserving filtering retinex algorithm. Multimed. Tools Appl. 79(25), 17257–17277 (2020). https://doi.org/10.1007/s11042-019-08404-4

    Article  Google Scholar 

  27. Zhuang, P., Li, C., Wu, J.: Bayesian retinex underwater image enhancement. Eng. Appl. Artif. Intell. 101, 104171 (2021). https://doi.org/10.1016/j.engappai.2021.104171

    Article  Google Scholar 

  28. Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: Watergan: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 3(1), 387–394 (2017). https://doi.org/10.1109/LRA.2017.2730363

    Article  Google Scholar 

  29. Fu, Z., Lin, H., Yang, Y., Chai, S., Sun, L., Huang, Y., Ding, X.: Unsupervised underwater image restoration: From a homology perspective. In: Proceedings of the AAAI Conference on Artificial Intelligence 36, pp. 643–651 (2022). https://doi.org/10.1609/aaai.v36i1.19944

  30. Guo, Y., Li, H., Zhuang, P.: Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J. Ocean. Eng. 45(3), 862–870 (2019). https://doi.org/10.1109/JOE.2019.2911447

    Article  Google Scholar 

  31. Li, C., Guo, J., Guo, C.: Emerging from water: Underwater image color correction based on weakly supervised color transfer. IEEE Signal Process. Lett. 25(3), 323–327 (2018). https://doi.org/10.1109/LSP.2018.2792050

    Article  Google Scholar 

  32. Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 98, 107038 (2020). https://doi.org/10.1016/j.patcog.2019.107038

    Article  Google Scholar 

  33. Liu, C., Shu, X., Pan, L., Shi, J., Han, B.: Multi-scale underwater image enhancement in rgb and hsv color spaces. IEEE Trans. Instrum. Meas. 72, 1–14 (2023). https://doi.org/10.1109/TIM.2023.3298395

    Article  Google Scholar 

  34. Qi, H., Zhou, H., Dong, J., Dong, X.: Deep color-corrected multi-scale retinex network for underwater image enhancement. IEEE Trans. Geosci. Remote Sens. 62, 1–13 (2023). https://doi.org/10.1109/TGRS.2023.3338611

    Article  Google Scholar 

  35. Jiang, K., Wang, Q., An, Z., Wang, Z., Zhang, C., Lin, C.-W.: Mutual retinex: Combining transformer and cnn for image enhancement. IEEE Trans. Emerg. Top. Comput. Intell. 8(3), 2240–2252 (2024). https://doi.org/10.1109/TETCI.2024.3369321

    Article  Google Scholar 

  36. Cai, X., Jiang, N., Chen, W., Hu, J., Zhao, T.: Cure-net: a cascaded deep network for underwater image enhancement. IEEE J. Ocean. Eng. 49(1), 226–236 (2023). https://doi.org/10.1109/JOE.2023.3245760

    Article  Google Scholar 

  37. Schechner, Y.Y., Karpel, N.: Recovery of underwater visibility and structure by polarization analysis. IEEE J. Ocean. Eng. 30(3), 570–587 (2005). https://doi.org/10.1109/JOE.2005.850871

    Article  Google Scholar 

  38. Lu, H., Li, Y., Zhang, L., Serikawa, S.: Contrast enhancement for images in turbid water. JOSA A 32(5), 886–893 (2015). https://doi.org/10.1364/JOSAA.32.000886

    Article  Google Scholar 

  39. Liu, H., Ding, Y., Zeng, H., Pu, H., Luo, J., Fan, B.: A cascaded multimodule image enhancement framework for underwater visual perception. IEEE Trans. Neural Netw. Learn. Syst. (2024). https://doi.org/10.1109/TNNLS.2024.3397886

    Article  Google Scholar 

  40. Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Bekaert, P.: Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 27(1), 379–393 (2017). https://doi.org/10.1109/TIP.2017.2759252

    Article  MathSciNet  Google Scholar 

  41. Zhou, J., Sun, J., Li, C., Jiang, Q., Zhou, M., Lam, K.-M., Zhang, W., Fu, X.: Hclr-net: Hybrid contrastive learning regularization with locally randomized perturbation for underwater image enhancement. Int. J. Comput. Vis. 132(10), 4132–4156 (2024). https://doi.org/10.1007/s11263-024-01987-y

    Article  Google Scholar 

  42. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions (2017). arXiv preprint arXiv:1710.05941

  43. Liu, H., Liu, F., Fan, X., Huang, D.: Polarized self-attention: Towards high-quality pixel-wise regression (2021). arXiv preprint arXiv:2107.00782

  44. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Advances in neural information processing systems 29 (2016). https://doi.org/10.48550/arXiv.1701.04128

  45. Carlevaris-Bianco, N., Mohan, A., Eustice, R.M.: Initial results in underwater single image dehazing. In: Oceans 2010 Mts/IEEE Seattle, pp. 1–8 (2010). https://doi.org/10.1109/OCEANS.2010.5664428

  46. Dosovitskiy, A.: An image is worth 16x16 words: Transformers for image recognition at scale (2020). arXiv preprint arXiv:2010.11929

  47. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  48. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  49. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. IEEE 2, pp. 1398–1402 (2003). https://doi.org/10.1109/ACSSC.2003.1292216

  50. Loshchilov, I., Hutter, F., et al.: Fixing weight decay regularization in adam (2017). arXiv preprint arXiv:1711.05101

  51. Qi, Q., Li, K., Zheng, H., Gao, X., Hou, G., Sun, K.: Sguie-net: Semantic attention guided underwater image enhancement with multi-scale perception. IEEE Trans. Image Process. 31, 6816–6830 (2022). https://doi.org/10.1109/TIP.2022.3216208

    Article  Google Scholar 

  52. Liu, R., Fan, X., Zhu, M., Hou, M., Luo, Z.: Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light. IEEE Trans. Circuits Syst. Video Technol. 30(12), 4861–4875 (2020). https://doi.org/10.1109/TCSVT.2019.2963772

    Article  Google Scholar 

  53. Islam, M.J., Xia, Y., Sattar, J.: Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 5(2), 3227–3234 (2020). https://doi.org/10.1109/LRA.2020.2974710

    Article  Google Scholar 

  54. Song, W., Wang, Y., Huang, D., Tjondronegoro, D.: A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration. In: Advances in Multimedia Information Processing–PCM 2018: 19th Pacific-Rim Conference on Multimedia, Hefei, China, September 21–22, 2018, Proceedings, Part I 19. Springer, pp. 678–688 (2018). https://doi.org/10.1007/978-3-030-00776-8_62

  55. Liu, S., Fan, H., Lin, S., Wang, Q., Ding, N., Tang, Y.: Adaptive learning attention network for underwater image enhancement. IEEE Robot. Autom. Lett. 7(2), 5326–5333 (2022). https://doi.org/10.1109/LRA.2022.3156176

    Article  Google Scholar 

  56. Liu, S., Fan, H., Wang, Q., Han, Z., Guan, Y., Tang, Y.: Wavelet-pixel domain progressive fusion network for underwater image enhancement. Knowl.-Based Syst. 299, 112049 (2024). https://doi.org/10.1016/j.knosys.2024.112049

    Article  Google Scholar 

  57. Tolie, H.F., Ren, J., Elyan, E.: Dicam: Deep inception and channel-wise attention modules for underwater image enhancement. Neurocomputing 584, 127585 (2024). https://doi.org/10.1016/j.neucom.2024.127585

    Article  Google Scholar 

  58. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  59. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018). https://doi.org/10.1109/CVPR.2018.00068

  60. Fu, Z., Fu, X., Huang, Y., Ding, X.: Twice mixing: a rank learning based quality assessment approach for underwater image enhancement. Signal Process. Image Commun. 102, 116622 (2022). https://doi.org/10.1016/j.image.2021.116622

    Article  Google Scholar 

  61. Guo, C., Wu, R., Jin, X., Han, L., Zhang, W., Chai, Z., Li, C.: Underwater ranker: Learn which is better and how to be better. Proceedings of the AAAI Conference on Artificial Intelligence 37, pp. 702–709 (2023). https://doi.org/10.1609/aaai.v37i1.25147

  62. Xie, Y., Kong, L., Chen, K., Zheng, Z., Yu, X., Yu, Z., Zheng, B.: Uveb: A large-scale benchmark and baseline towards real-world underwater video enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22358–22367 (2024). https://doi.org/10.1109/CVPR52733.2024.02110

  63. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 27(4), 2049–2062 (2018). https://doi.org/10.1109/TIP.2018.2794218

    Article  MathSciNet  Google Scholar 

  64. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018). https://doi.org/10.1109/TIP.2018.2867951

    Article  MathSciNet  Google Scholar 

  65. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 695–704 (2018). https://doi.org/10.1109/CVPR.2018.00079

  66. Liu, C., Li, H., Wang, S., Zhu, M., Wang, D., Fan, X., Wang, Z.: A dataset and benchmark of underwater object detection for robot picking. In: 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6 (2021). https://doi.org/10.1109/ICMEW53276.2021.9455997

  67. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  68. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6), 679–698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  69. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recogn. 106, 107404 (2020). https://doi.org/10.1016/j.patcog.2020.107404

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 62203192.

Author information

Authors and Affiliations

Contributions

DX contributed to conceptualization, resources, supervision, and writing the review and editing. WX was responsible for conceptualization, methodology, software, investigation, and also contributed to writing of the original draft. YZ assisted with funding acquisition and wrote the review and editing. XS wrote the review and editing. QQ conducted formal analysis, and contributed to visualization. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dan Xu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest related to this article.

Additional information

Communicated by Matthew Korban.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Xu, W., Zhou, Y. et al. Adaptive color-corrected multicolor space enhancement network for underwater image enhancement. Multimedia Systems 31, 283 (2025). https://doi.org/10.1007/s00530-025-01867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-025-01867-6

Keywords