Abstract.
In this paper, the new methods being generalizations of Weierstrass-Dochev method have been demonstrated. These methods possess quadratic convergence if the multiplicities of the roots, which we seek, are known and they can be used for simultaneous determination of all roots or only part of all roots.
Similar content being viewed by others

Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alefeld, G., Herzberger, J.: On the convergence speed of some algorithms for the simultaneous approximation of polynomial roots. SIAM J. Numer. Anal. 11, 237–243 (1974).
Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of numerical analysis. 2. Amsterdam: Elsevier 1991.
Deutsch, E.: Lower bounds for the Perron root of a nonnegative irreducible matrix. Math. Proc. Cambridge Philos. Soc. 92, 49–54 (1982).
Dochev, K.: An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation. Phys.-Math. J. 5, 136–139 (1962).
Durand, E.: Solution numérique des équations algébraique, tome I. Paris: Masson 1960.
Farmer, M., Loizou, G.: An algorithm for the total, or partial, factorization of a polynomial. Math. Proc. Camb. Phil. Soc. 82, 427–437 (1977).
Iliev, A., Iliev, I.: On a generalization of Weierstrass-Dochev method for simultaneous extraction of all roots of polynomials, over an arbitrary Chebyshev system. C. R. Acad. Bulg. Sci. 54, 31–36 (2001).
Iliev, A., Kyurkchiev, N.: On a generalization of Weierstrass-Dochev method for simultaneous extraction of only a part of all roots of algebraic polynomials, part I. C. R. Acad. Bulg. Sci. 55, 23–26 (2002).
Iliev, A., Kyurkchiev, N.: Some methods for simultaneous extraction of only a part of all roots of algebraic polynomials, part II. C. R. Acad. Bulg. Sci. 55, 17–22 (2002).
Iliev, A., Semerdzhiev, K.: On a generalization of Obreshkoff-Ehrlich method for simultaneous extraction of all roots of polynomials over an arbitrary Chebyshev system. Comput. Math. Phys. 41, 1385–1392 (2001).
Kyurkchiev, N.: Initial approximation and root finding methods. Berlin: Wiley-VCH 1998.
Kyurkchiev, N., Iliev, A.: A family of methods for simultaneous extraction of only a part of all roots of algebraic polynomials. BIT 42, 879–885 (2002).
Loizou, G.: Une note sur le procédé itératif de Marica Prešić. C. R. Acad. Sci. Paris 295, 707–710 (1982).
Ortega, J., Rheinboldt, W.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.
Petkovic, M.: Iterative methods for simultaneous inclusion of polynomial zeros. Lecture Notes in Mathematics 1387. Berlin: Springer 1989.
Prešić, M.: Un procédé itératif pour déterminer k zéros d’un polynome. C. R. Acad. Sci. Paris 273, 446–449 (1971).
Schröder. E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870).
Semerdzhiev, K.: Iteration methods for simultaneous finding all roots of generalized polynomial equations. Math. Balk. New Ser. 8, 311–335 (1994).
Sendov, B., Andreev, A., Kyurkchiev, N.: Numerical solution of polynomial equations. In: Handbook of numerical analysis 3. Amsterdam: Elsevier 1994.
Weierstrass, K.: Neuer Beweis des Satzes, dass jede ganze rationale Funktion einer Veränderlichen dargestellt werden kann als ein Produkt aus linearen Funktionen derselben Veränderlichen. Ges. Werke 3, 251–269 (1903).
Wissenschaftliches Rechnen: Eine Einführung in das Scientific Computing. (Herzberger, J., ed.) Berlin: Akademie Verlag 1995.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Iliev, A., Kyurkchiev, N. Some Methods for Simultaneous Extraction of a Part of All Multiple Roots of Algebraic Polynomials. Computing 75, 85–97 (2005). https://doi.org/10.1007/s00607-004-0116-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-004-0116-9