Abstract
In this paper we investigate variational principles on the space of functions of bounded Hessian for denoising, for numerical calculation of convex envelopes and for approximation by convex functions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
R. Acar C. R. Vogel (1994) ArticleTitleAnalysis of bounded variation penalty methods for ill-posed problems Inverse Probl. 10 1217–1229 Occurrence Handle10.1088/0266-5611/10/6/003
R. A. Adams (1975) Sobolev spaces Academic Press New York
B. Brighi M. Chipot (1994) ArticleTitleApproximated convex envelope of a function SIAM J. Numer. Anal. 31 128–148 Occurrence Handle10.1137/0731007
M. Carriero A. Leaci F. Tomarelli (1992) ArticleTitlePlastic free discontinuities and special bounded Hessian C. R. Acad. Sci. Paris Sér. I Math. 314 595–600
M. Carriero A. Leaci F. Tomarelli (1992) ArticleTitleSpecial bounded Hessian and elastic-plastic plate Rend. Accad. Naz. Sci. XL Mem. Mat. 16 223–258
A. Chambolle P. L. Lions (1997) ArticleTitleImage recovery via total variation minimization and related problems Numer. Math. 76 167–188 Occurrence Handle10.1007/s002110050258
T. Chan A. Marquina P. Mulet (2000) ArticleTitleHigh-order total variation-based image restoration SIAM J. Sci. Comput. 22 503–516 Occurrence Handle10.1137/S1064827598344169
T. F. Chan G. H. Golub P. Mulet (1999) ArticleTitleA nonlinear primal-dual method for total variation-based image restoration SIAM J. Sci. Comput. 20 1964–1977 Occurrence Handle10.1137/S1064827596299767
T. F. Chan P. Mulet (1999) ArticleTitleOn the convergence of the lagged diffusivity fixed point method in total variation image restoration SIAM J. Numer. Anal. 36 354–367 Occurrence Handle10.1137/S0036142997327075
Chan, T. F., Wong, C. K.: Convergence of the alternating minimization algorithm for blind deconvolution. Linear Algebra Appl. 316, 259–285 (2000). Conf. Celebrating the 60th Birthday of Robert J. Plemmons (Winston-Salem, NC, 1999).
Chan, T. F., Wong, C. K.: Total variation blind deconvolution. IEEE Trans. Image Proc. 7, (1998).
G. Chavent K. Kunisch (1997) ArticleTitleRegularization of linear least squares problems by total bounded variation ESAIM Control Optim. Calc. Var. 2 359–376 Occurrence Handle10.1051/cocv:1997113
B. Dacorogna (1982) Weak continuity and weak lower semi-continuity of nonlinear functionals Springer Berlin Heidelberg New York
B. Dacorogna (1989) Direct methods in the calculus of variations Springer Berlin
F. Demengel (1983) ArticleTitleProblèmes variationnels en plasticité parfaite des plaques Numer. Funct. Anal. Optim. 6 73–119
F. Demengel (1984) ArticleTitleFonctions à Hessien borné Ann. Inst. Fourier 34 155–190
H. W. Engl M. Hanke A. Neubauer (1996) Regularization of inverse problems Dordrecht Kluwer
L. C. Evans R. F. Gariepy (1992) Measure theory and fine properties of functions Boca Raton CRC Press
D. Geman C. Yang (1995) ArticleTitleNonlinear image recovery with half-quadratic regularization IEEE Trans. Image Proc. 4 932–945 Occurrence Handle10.1109/83.392335
S. Geman D. Geman (1984) ArticleTitleStochastic relaxation, Gibbs distributions, and the Bayseian restoration of images IEEE Trans. Pattern Anal. Machine Intell. 6 721–741
Golub, G. H., Van Loan, Ch. F.: Matrix computations, 3rd ed. Baltimore: The Johns Hopkins University Press 1996.
Isakov, V.: Inverse source problems. Providence, RI: American Mathematical Society, 1990.
Isakov, V.: Inverse problems for partial differential equations. Appl. Math. Sci. 127, (1998).
K. Ito K. Kunisch (1999) ArticleTitleAn active set strategy based on the augmented Lagrangian formulation for image restoration M2AN Math. Model. Numer. Anal. 33 1–21 Occurrence Handle10.1051/m2an:1999102
K. Ito K. Kunisch (2000) ArticleTitleAugmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces Nonlinear Anal. Theor. Meth. Appl. 41A 591–616 Occurrence Handle10.1016/S0362-546X(98)00299-5
F. Kadhi A. Trad (2001) ArticleTitleCharacterization and approximation of the convex envelope of a function J. Optim. Theor. Appl. 110 457–466 Occurrence Handle10.1023/A:1017591716397
Y. Lucet (1996) ArticleTitleA fast computational algorithm for the Legendre-Fenchel transform Comput. Optim. Appl. 6 27–57 Occurrence Handle10.1007/BF00248008
M. Lysaker A. Lundervold X. Tai (2003) ArticleTitleNoise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time IEEE Trans. Image Proc. 12 1579–1590 Occurrence Handle10.1109/TIP.2003.819229
C. B. Morrey SuffixJr (1966) Multiple integrals in the calculus of variations Springer New York
M. Z. Nashed O. Scherzer (1997) ArticleTitleStable approximations of nondifferentiable optimization problems with variational inequalities Contemp. Math. 204 155–170
M. Z. Nashed O. Scherzer (1998) ArticleTitleLeast squares and bounded variation regularization with nondifferentiable functional Numer. Funct. Anal. Optim. 19 873–901
Nashed, M. Z., Scherzer, O. (eds.): Interactions on inverse problems and imaging. Contemp. Math. 313, (2002).
M. Nikolova (2000) ArticleTitleLocal strong homogeneity of a regularized estimator SIAM J. Appl. Math. 61 633–658 Occurrence Handle10.1137/S0036139997327794
M. Nikolova (2000) ArticleTitleThresholding implied by truncated quadratic regularization IEEE Trans. Signal Proc. 48 3437–3450 Occurrence Handle10.1109/78.887035
S. Osher L. I. Rudin (1990) ArticleTitleFeature-oriented image enhancement using shock filters SIAM J. Numer. Anal. 27 919–940 Occurrence Handle10.1137/0727053
E. Radmoser O. Scherzer J. Weickert (2000) ArticleTitleScale-space properties of nonstationary iterative regularization methods J. Vis. Commun. Image Represent. 11 96–114 Occurrence Handle10.1006/jvci.1999.0437
L. I. Rudin S. Osher E. Fatemi (1992) ArticleTitleNonlinear total variation based noise removal algorithms Physica D 60 259–268 Occurrence Handle10.1016/0167-2789(92)90242-F
G. Savaré F. Tomarelli (1998) ArticleTitleSuperposition and chain rule for bounded Hessian functions Adv. Math. 140 237–281 Occurrence Handle10.1006/aima.1998.1770
O. Scherzer (1998) ArticleTitleDenoising with higher-order derivatives of bounded variation and an application to parameter estimation Computing 60 1–27
Scherzer, O.: Explicit versus implicit relative error regularization on the space of functions of bounded variation. In [32], 171–198 (2002).
O. Scherzer J. Weickert (2000) ArticleTitleRelations between regularization and diffusion filtering J. Math. Image Vis. 12 43–63 Occurrence Handle10.1023/A:1008344608808
L. Vese (1999) ArticleTitleA method to convexify functions via curve evolution Commun. Partial Differential Equations 24 1573–1591
E. Zeidler (1993) Nonlinear functional analysis and its applications I Springer New York
H. Zhao S. Osher (2002) Visualization, analysis and shape reconstruction of unorganized sets S. Osher N. Paragios (Eds) Geometric level set methods in imaging, vision and graphics Springer Berlin Heidelberg New York
H. Zhao S. Osher B. Merriman M. Kang (2000) ArticleTitleImplicit and non-parametric shape representation from unorganized data using a variational level set method Comput. Vis. Image Understanding 80 IssueID3 295–314 Occurrence Handle10.1006/cviu.2000.0875
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hinterberger, W., Scherzer, O. Variational Methods on the Space of Functions of Bounded Hessian for Convexification and Denoising. Computing 76, 109–133 (2006). https://doi.org/10.1007/s00607-005-0119-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-005-0119-1