Abstract
In this paper, we show that a known technique of smoothing can be successfully employed in the numerical solution of weakly singular linear Volterra integro-differential equations and we introduce a Nyström-type method whose order of convergence is also estimated.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anselone, P. M.: Collectively compact operator approximation theory and applications to integral equations. Englewood Cliffs, NJ: Prentice-Hall 1971.
Atkinson, K. E.: A survey of numerical methods for the solution of Fredholm integral equations of the second kind. Philadelphia: SIAM 1976.
P. Baratella A. Palamara Orsi (2004) ArticleTitleA new approach to the numerical solution of weakly singular Volterra integral equations JCAM 163 401–418 Occurrence Handle2005a:65157
H. Brunner (1983) ArticleTitleNonpolynomial spline collocation for Volterra equations with weakly singular kernels SIAM J. Numer. Anal. 20 1106–1119 Occurrence Handle10.1137/0720080 Occurrence Handle0533.65087 Occurrence Handle85d:65069
H. Brunner (2004) Collocation methods for volterra integral and related functional equations Cambridge University Press Cambridge
H. Brunner A. Pedas G. Vainikko (2001) ArticleTitlePiecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels SIAM J. Numer. Anal. 39 957–982 Occurrence Handle10.1137/S0036142900376560 Occurrence Handle2002f:65190
G. Criscuolo G. Mastroianni G. Monegato (1990) ArticleTitleConvergence properties of a class of product formulas for weakly singular integral equations Math. Comp. 55 213–230 Occurrence Handle90m:65230
T. Diogo N. B. Franco P. Lima (2004) ArticleTitleHigh-order product integration methods for a Volterra integral Equation with logarithmic singular kernel Commun. Pure Appl. Anal. 3 217–235 Occurrence Handle2005b:65146
T. Diogo S. McKee T. Tang (1994) ArticleTitleCollocation methods for second-kind Volterra integral equations with weakly singular kernels Proc. Roy. Soc. Edinburgh Sect. A 124 199–210 Occurrence Handle95c:45011
G. Monegato L. Scuderi (1998) ArticleTitleHigh-order methods for weakly singular integral equations with non-smooth input functions Math. Comp. 67 1493–1515 Occurrence Handle10.1090/S0025-5718-98-01005-9 Occurrence Handle99a:65192
Norbury, J., Stuart, A. M.: Volterra integral equations and a new Gronwall inequality. I. The linear case; II. The nonlinear case. Proc. Roy. Soc. Edinburgh Sect. A 106, 361–373;375–384 (1987).
Palamara A. Orsi (1996) ArticleTitleProduct integration for Volterra integral equations of the second kind with weakly singular kernels Math. Comp. 65 1201–1212 Occurrence Handle96j:65147
A. Pedas G. Vainikko (2004) ArticleTitleNumerical solution of weakly singular Volterra integral equations with change of variables Proc. Estonian Acad. Sci. Phys. Math. 53 99–106 Occurrence Handle2005e:65217
A. Pedas G. Vainikko (2004) ArticleTitleSmoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equations Computing 73 271–293 Occurrence Handle10.1007/s00607-004-0088-9 Occurrence Handle2005k:65295
I. H. Sloan (1981) ArticleTitleAnalysis of general quadrature methods for integral equations of the second kind Numer. Math. 38 263–278 Occurrence Handle10.1007/BF01397095 Occurrence Handle0456.45012 Occurrence Handle82m:65128
I. H. Sloan W. E. Smith (1982) ArticleTitleProperties of interpolatory product integration rules SIAM J. Numer. Anal. 19 427–442 Occurrence Handle10.1137/0719027 Occurrence Handle83e:41032
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baratella, P., Palamara Orsi, A. Numerical Solution of Weakly Singular Linear Volterra Integro-differential Equations. Computing 77, 77–96 (2006). https://doi.org/10.1007/s00607-005-0148-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-005-0148-9