Abstract
Running error analysis for the bivariate de Casteljau algorithm and the VS algorithm is performed. Theoretical results joint with numerical experiments show the better stability properties of the de Casteljau algorithm for the evaluation of bivariate polynomials defined on a triangle in spite of the lower complexity of the VS algorithm. The sharpness of our running error bounds is shown.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Higham, N. J.: Accuracy and stability of numerical algorithms, 2nd ed.. Philadelphia: SIAM 2002.
T. Lyche J. M. Peña (2004) ArticleTitleOptimally stable multivariate bases Adv. Comput. Math. 20 149–159 Occurrence Handle10.1023/A:1025863309959 Occurrence Handle2005d:65010
Lyche, T., Scherer, K.: On the sup-norm condition number of the multivariate triangular Bernstein basis. In: Multivariate approximation and splines (Nürnberger, G., Schmidt, J. W., Walz, G., eds). ISNM, Vol. 125. Birkhäuser 1997, pp. 141–151.
T. Lyche K. Scherer (2000) ArticleTitleOn the p-norm condition number of the multivariate triangular Bernstein basis J. Comput. Appl. Math. 119 259–273 Occurrence Handle2001h:41009
E. Mainar J. M. Peña (1999) ArticleTitleError analysis of corner cutting algorithms Numer. Algorith. 22 41–52
Peña, J. M.: Error analysis of algorithms for evaluating Bernstein-Bézier-type multivariate polynomials. In: Curves and surfaces design (Laurent, P.-J., Sablonniere, P., Schumaker, L. L. eds). Nashville, TN: Vanderbilt University Press, 2000, pp. 315–324.
J. M. Peña T. Sauer (2000) ArticleTitleOn the multivariate Horner scheme II: Running error analysis Computing 65 313–322 Occurrence Handle2001m:65067
L. L. Schumaker W. Volk (1986) ArticleTitleEfficient evaluation of multivariate polynomials Comput. Aided Geom. Design 3 149–154
Wilkinson, J. H.: The evaluation of the zeros of ill-conditioned polynomials, parts I and II. Numer. Math. 1, 150–166 and 167–180 (1959).
Wilkinson, J. H.: Rounding errors in algebraic processes. Notes on Appl. Sci., Vol. 32. Englewood Cliffs, N.J.: Prentice-Hall, 1963.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mainar, E., Peña, J.M. Running Error Analysis of Evaluation Algorithms for Bivariate Polynomials in Barycentric Bernstein Form. Computing 77, 97–111 (2006). https://doi.org/10.1007/s00607-005-0149-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-005-0149-8