Abstract
In this paper, we describe a matrix-free iterative algorithm based on the GMRES method for solving electromagnetic scattering problems expressed in an integral formulation. Integral methods are an interesting alternative to differential equation solvers for this problem class since they do not require absorbing boundary conditions and they mesh only the surface of the radiating object giving rise to dense and smaller linear systems of equations. However, in realistic applications the discretized systems can be very large and for some integral formulations, like the popular Electric Field Integral Equation, they become ill-conditioned when the frequency increases. This means that iterative Krylov solvers have to be combined with fast methods for the matrix-vector products and robust preconditioning to be affordable in terms of CPU time. In this work we describe a matrix-free two-grid preconditioner for the GMRES solver combined with the Fast Multipole Method. The preconditioner is an algebraic two-grid cycle built on top of a sparse approximate inverse that is used as smoother, while the grid transfer operators are defined using spectral information of the preconditioned matrix. Experiments on a set of linear systems arising from real radar cross section calculation in industry illustrate the potential of the proposed approach for solving large-scale problems in electromagnetism.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alléon, G., Amram, S., Durante, N., Homsi, P., Pogarieloff, D., Farhat, C.: Massively parallel processing boosts the solution of industrial electromagnetic problems: High performance out-of-core solution of complex dense systems. In: Proc. 8th SIAM Conf. on Parallel (M. Heath, V. Torczon, G. Astfalk, P. E. Bjørstad, A. H. Karp, C. H. Koebel, V. Kumar, R. F. Lucas, L. T. Watson, D. E. Womble, eds.), Minneapolis, Minnesota, USA. Philadelphia: SIAM 1997.
G. Alléon M. Benzi L. Giraud (1997) ArticleTitleSparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics Numer. Algorithm 16 1–15 Occurrence Handle10.1023/A:1019170609950 Occurrence Handle1623628
J. Baglama D. Calvetti G. H. Golub L. Reichel (1999) ArticleTitleAdaptively preconditioned GMRES algorithms SIAM J. Sci. Comput. 20 IssueID1 243–269 Occurrence Handle10.1137/S1064827596305258 Occurrence Handle99d:65097
M. Bebendorf (2000) ArticleTitleApproximation of boundary element matrices Numer. Math. 86 IssueID4 565–589 Occurrence Handle10.1007/PL00005410 Occurrence Handle0966.65094 Occurrence Handle2001j:65022
M. Bebendorf S. Rjasanov (2003) ArticleTitleAdaptive low-rank approximation of collocation matrices Computing 70 IssueID1 1–24 Occurrence Handle10.1007/s00607-002-1469-6 Occurrence Handle2004a:65177
M. Benzi M. Tůma (1998) ArticleTitleA sparse approximate inverse preconditioner for non-symmetric linear systems SIAM J. Sci. Comput. 19 968–994 Occurrence Handle10.1137/S1064827595294691 Occurrence Handle98m:65071
C. Calvez ParticleLe B. Molina (1999) ArticleTitleImplicitly restarted and deflated GMRES Numer. Algorithm 21 261–285 Occurrence Handle10.1023/A:1019113630790 Occurrence Handle2000i:65047
Canning, F. X.: The impedance matrix localization (IML) method for moment-method calculations. IEEE Antennas and Propagation Magazine 1990.
B. Carpentieri I. S. Duff L. Giraud (2003) ArticleTitleA class of spectral two-level preconditioners SIAM J. Sci. Comput. 25 IssueID2 749–765 Occurrence Handle10.1137/S1064827502408591 Occurrence Handle2005g:65054
B. Carpentieri I. S. Duff L. Giraud G. Sylvand (2005) ArticleTitleCombining fast multipole techniques and an approximate inverse preconditioner for large parallel electromagnetics calculations SIAM J. Sci. Comput. 27 IssueID3 774–792 Occurrence Handle10.1137/040603917 Occurrence Handle2199907
Carpentieri, B., Giraud, L., Gratton, S.: Additive and multiplicative two-level spectral preconditioning for general linear systems. Technical Report TR/PA/04/38, CERFACS, Toulouse, France, 2004
K. Chen (2001) ArticleTitleAn analysis of sparse approximate inverse preconditioners for boundary integral equations SIAM J. Matrix Anal. Appl. 22 IssueID3 1058–1078 Occurrence Handle10.1137/S0895479898348040 Occurrence Handle0985.65038 Occurrence Handle2002a:65188
W. C. Chew Y. M. Wang (1993) ArticleTitleA recursive t-matrix approach for the solution of electromagnetic scattering by many spheres IEEE Trans. Antennas Propagation 41 IssueID12 1633–1639 Occurrence Handle10.1109/8.273306
W. C. Chew K. F. Warnick (2001) ArticleTitleOn the spectrum of the electric field integral equation and the convergence of the moment method Int. J. Numer. Meth. Engng. 51 475–489 Occurrence Handle2002b:78020
E. Chow Y. Saad (1997) ArticleTitleExperimental study of ILU preconditioners for indefinite matrices J. Comput. Appl. Math. 86 387–414 Occurrence Handle10.1016/S0377-0427(97)00171-4 Occurrence Handle98h:65013
E. Darve (2000) ArticleTitleThe fast multipole method: Numerical implementation J. Comp. Phys. 160 IssueID1 195–240 Occurrence Handle10.1006/jcph.2000.6451 Occurrence Handle0974.78012 Occurrence Handle2001a:78050
Edelman, A.: Records in dense linear algebra [online, cited 27 April 2005]. Available from: http://www-math.mit.edu/edelman/records.html.
J. Erhel K. Burrage B. Pohl (1996) ArticleTitleRestarted GMRES preconditioned by deflation J. Comput. Appl. Math. 69 303–318 Occurrence Handle10.1016/0377-0427(95)00047-X Occurrence Handle97a:65035
L. Fournier S. Lanteri (2001) ArticleTitleMultiplicative and additive parallel multigrid algorithms for the acceleration of compressible flow computations on unstructured meshes Appl. Numer. Math. 36 401–426 Occurrence Handle10.1016/S0168-9274(00)00017-9 Occurrence Handle2002a:65166
N. I. M. Gould J. A. Scott (1998) ArticleTitleSparse approximate-inverse preconditioners using norm-minimization techniques SIAM J. Sci. Comput. 19 IssueID2 605–625 Occurrence Handle10.1137/S1064827595288425 Occurrence Handle1618848
L. Greengard W. Gropp (1990) ArticleTitleA parallel version of the fast multipole method Comput. Math. Appl. 20 63–71 Occurrence Handle10.1016/0898-1221(90)90349-O Occurrence Handle91e:78003
L. Greengard V. Rokhlin (1987) ArticleTitleA fast algorithm for particle simulations J. Comput. Phys. 73 325–348 Occurrence Handle10.1016/0021-9991(87)90140-9 Occurrence Handle88k:82007
W. Hackbush (1999) ArticleTitleA sparse matrix arithmetic based on
-matrices Computing 62 IssueID2 89–108 Occurrence Handle10.1007/s006070050015 Occurrence Handle2000c:65039
W. Hackbush Z. P. Nowak (1989) ArticleTitleOn the fast matrix multiplication in the boundary-element method by panel clustering Nummath. 54 IssueID4 463–491
HSL. A collection of Fortran codes for large scale scientific computation, 2000. http://www.numerical.rl.ac.uk/hsl.
S. A. Kharchenko A. Yu (1995) ArticleTitleYeremin. Eigenvalue translation based preconditioners for the GMRES(k) method Numer. Linear Algebra Appl. 2 IssueID1 51–77 Occurrence Handle10.1002/nla.1680020105 Occurrence Handle95i:65069
L.Y. Kolotilina A Yu (1993) ArticleTitleYeremin. Factorized sparse approximate inverse preconditionings. I: Theory SIAM J. Matrix Anal. Appl. 14 45–58 Occurrence Handle10.1137/0614004 Occurrence Handle93m:65061
Lee, J., Lu, C.-C., Zhang, J.: Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics. Technical Report 363-02, Department of Computer Science, University of Kentucky, KY, 2002
J. Lee C.-C. Lu J. Zhang (2003) ArticleTitleIncomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems J. Comp. Phys. 185 158–175 Occurrence Handle10.1016/S0021-9991(02)00052-9
Morgan, R. B.: Implicitely restarted GMRES and Arnoldi methods for nonsymmetric systems of equations. SIAM J. Matrix Anal. Appl. 21(4), 1112–1135.
R. B. Morgan (1995) ArticleTitleA restarted GMRES method augmented with eigenvectors SIAM J. Matrix Anal. Appl. 16 1154–1171 Occurrence Handle10.1137/S0895479893253975 Occurrence Handle0836.65050 Occurrence Handle96f:65037
R. B. Morgan (2002) ArticleTitleGMRES with deflated restarting SIAM J. Sci. Comput. 24 IssueID1 20–37 Occurrence Handle10.1137/S1064827599364659 Occurrence Handle1018.65042 Occurrence Handle2003h:65040
Rahola, J.: Experiments on iterative methods and the fast multipole method in electromagnetic scattering calculations. Technical Report TR/PA/98/49, CERFACS, Toulouse, France, 1998
S. M. Rao D. R. Wilton A. W. Glisson (1982) ArticleTitleElectromagnetic scattering by surfaces of arbitrary shape IEEE Trans. Antennas Propagat. AP-30 409–418 Occurrence Handle10.1109/TAP.1982.1142818
V. Rokhlin (1990) ArticleTitleRapid solution of integral equations of scattering theory in two dimensions J. Comp. Phys. 86 IssueID2 414–439 Occurrence Handle10.1016/0021-9991(90)90107-C Occurrence Handle0686.65079 Occurrence Handle90k:76081
Y. Saad (1988) ArticleTitleProjection and deflation methods for partial pole assignment in linear state feedback IEEE Trans. Automat. Contr. 33 IssueID3 290–297 Occurrence Handle10.1109/9.406 Occurrence Handle0641.93031 Occurrence Handle927848
Samant, A. R., Michielssen, E., Saylor, P.:Approximate inverse based preconditioners for 2D dense matrix problems. Technical Report CCEM-11-96, University of Illinois, 1996.
K. Sertel J. L. Volakis (2000) ArticleTitleIncomplete LU preconditioner for FMM implementation Micro. Opt. Tech. Lett. 26 IssueID7 265–267 Occurrence Handle10.1002/1098-2760(20000820)26:4<265::AID-MOP18>3.0.CO;2-O
J. Song C.-C. Lu W. C. Chew (1997) ArticleTitleMultilevel fast multipole algorithm for electromagnetic scattering by large complex objects IEEE Trans. Antennas Propagation 45 IssueID10 1488–1493 Occurrence Handle10.1109/8.633855
Sylvand, G.: La méthode multipôle rapide en electromagnétisme : performances, parallélisation, applications. PhD thesis, Ecole Nationale des Ponts et Chaussées, 2002
R. S. Tuminaro (1992) ArticleTitleA highly parallel multigrid-like method for the solution of the Euler equations SIAM J. Sci. Stat. Comput. 13 88–100 Occurrence Handle10.1137/0913005 Occurrence Handle0742.76068 Occurrence Handle92m:76102
S. A. Vavasis (1992) ArticleTitlePreconditioning for boundary integral equations SIAM J. Matrix Anal. Appl. 13 905–925 Occurrence Handle10.1137/0613055 Occurrence Handle0755.65109 Occurrence Handle93b:65062
Y. Saad (1993) ArticleTitleAnalysis of augmented Krylov subspace techniques SIAM J. Sci. Comput. 14 461–469 Occurrence Handle10.1137/0914028 Occurrence Handle0780.65022 Occurrence Handle1204241
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Carpentieri, B. A Matrix-free Two-grid Preconditioner for Solving Boundary Integral Equations in Electromagnetism. Computing 77, 275–296 (2006). https://doi.org/10.1007/s00607-006-0161-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-006-0161-7