Abstract
In this paper, we will design and analyze a class of new algebraic multigrid methods for algebraic systems arising from the discretization of second order elliptic boundary value problems by high-order finite element methods. For a given sparse stiffness matrix from a quadratic or cubic Lagrangian finite element discretization, an algebraic approach is carefully designed to recover the stiffness matrix associated with the linear finite element disretization on the same underlying (but nevertheless unknown to the user) finite element grid. With any given classical algebraic multigrid solver for linear finite element stiffness matrix, a corresponding algebraic multigrid method can then be designed for the quadratic or higher order finite element stiffness matrix by combining with a standard smoother for the original system. This method is designed under the assumption that the sparse matrix to be solved is associated with a specific higher order, quadratic for example, finite element discretization on a finite element grid but the geometric data for the underlying grid is unknown. The resulting new algebraic multigrid method is shown, by numerical experiments, to be much more efficient than the classical algebraic multigrid method which is directly applied to the high-order finite element matrix. Some theoretical analysis is also provided for the convergence of the new method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
R. Bank J. Xu (1996) ArticleTitleAn algorithm for coarsing unstructured meshes Numer. Math. 73 IssueID1 1–36 Occurrence Handle1379277 Occurrence Handle10.1007/s002110050181
J. H. Bramble J. E. Pasciak J. Wang J. Xu (1991) ArticleTitleConvergence estimates for multigrid algorithms without regularity assumptions Math. Comp. 57 IssueID195 23–45 Occurrence Handle1079008 Occurrence Handle10.2307/2938661
A. Brandt (1977) ArticleTitleMulti-level adaptive solutions to boundary-value problems Math. Comp. 31 333–390 Occurrence Handle0373.65054 Occurrence Handle431719 Occurrence Handle10.2307/2006422
Brandt, A.: Multigrid techniques: 1984 guide with applications to fluid dynamics. GMD-Studien Nr. 85. Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin, Germany, 1984.
A. Brandt S. F. McCormick J. W. Ruge (1983) ArticleTitleMultigrid methods for differential eigenproblems SIAM J. Sci. Stat. Comput. 4 244–260 Occurrence Handle697178 Occurrence Handle10.1137/0904019
A. Brandt (1984) Algebraic multigrid (AMG) for sparse matrix equations D. J. Evans (Eds) Sparsity and its application Cambridge University Press Cambridge
Brandt, A.: Multiscale scientific computation. Six year research summary 1999.
A. Brandt S. F. McCormick J. W. Ruge (1984) Algebraic multigrid (AMG) for sparse matrix equations D. J. Evans (Eds) Sparsity and its applications Cambridge University Press Cambridge
M. Brezina A. J. Cleary R. D. Falgout V. E. Henson J. E. Jones T. A. Manteuffel S. F. McCormick J. W. Ruge (2000) ArticleTitleAlgebraic multigrid based on element interpolation (AMGe) SIAM J. Sci. Comput. 22 IssueID5 1570–1592 Occurrence Handle1813287 Occurrence Handle10.1137/S1064827598344303
Chan, T. F., Xu, J., Zikatanov, L.: An agglomeration multigrid method for unstructured grids in 10th Int. Conf. on Domain Decomposition Methods. Contemporary Mathematics, vol. 218. AMS, pp. 67–81 (1998).
J. E. Dendy (1982) ArticleTitleBlack box multigrid J. Comput. Phys. 48 366–386 Occurrence Handle0495.65047 Occurrence Handle684260 Occurrence Handle10.1016/0021-9991(82)90057-2
Y. R. Efendiev T. Y. Hou Z.-H. Wu (2000) ArticleTitleConvergence of a nonconforming multiscale finite element method SIAM J. Numer. Anal. 37 IssueID3 888–910 Occurrence Handle1740386 Occurrence Handle10.1137/S0036142997330329
W. Hackbusch (1985) Multigrid methods and applications. Computational Mathematics, vol. 4 Springer Berlin
Henson, V. E., Vassilevski, P.S.: Element-free AMGe: general algorithms for computing interpolation weights in AMG. SIAM J. Sci. Comput. 23, 629–650 (electronic) (2001). Copper Mountain Conference 2000.
P. S. V. J. E. Jones (2001) ArticleTitleAMGe based element agglomeration SIAM J. Sci. Comput. 23 109–133 Occurrence Handle0992.65140 Occurrence Handle1860907 Occurrence Handle10.1137/S1064827599361047
J. Mandel M. Brezina P. Vanek (1999) ArticleTitleEnergy optimization of algebraic multigrid bases Computing 62 IssueID3 205–228 Occurrence Handle1697843 Occurrence Handle10.1007/s006070050022
J. Mandel G. S. Lett (1991) ArticleTitleDomain decomposition preconditioning of p-version finite elements with high aspect ratios Appl. Num. Math. 8 411–425 Occurrence Handle1136835 Occurrence Handle10.1016/0168-9274(91)90077-D
Ruge, J.: AMG for higher-order discretizations of second-order elliptic problems. Presented at 11th Copper Mountain Conference on Multigrid Methods 2003.
J. Ruge K. Stüben (1987) Algebraic multigrid S. McCormick (Eds) Multigrid methods SIAM Philadelphia, PA
S. Shi X. Jinchao X. Yingxiong L. Zikatanov (2002) Algebraic multigrid method on lattice block materials T. F. Chan (Eds) et al. Recent Progress in Computional and Applied PDEs Boston London 289–307
Stüben, K.: A review of algebraic multigrid. GMD Report 69, 1999.
Trottenberg, U., Oosterlee, C. W., Schuller, A.: Multigrid. San Diego, CA: Academic Press 2001. With contributions by A. Brandt, P. Oswald and K. Stiiben.
P. Vanek J. Mandel M. Brezina (1996) ArticleTitleAlgebraic multigrid by smoothed aggregation for second- and fourth-order elliptic problems Computing 56 IssueID3 179–196 Occurrence Handle1393006 Occurrence Handle10.1007/BF02238511
P. Vanek M. Brezina J. Mandel (2001) ArticleTitleConvergence of algebraic multigrid based on smoothed aggregation Numer. Math. 88 IssueID3 559–579 Occurrence Handle1835471 Occurrence Handle10.1007/s211-001-8015-y
W. L. Wan T. F. Chan B. Smith (2000) ArticleTitleAn energy-minimizing interpolation for robust multigrid methods SIAM J. Sci. Comput. 21 IssueID3 559–579 Occurrence Handle1756048
J. Xu (1992) ArticleTitleIterative methods by space decomposition and subspace correction SIAM Rev. 34 581–613 Occurrence Handle0788.65037 Occurrence Handle1193013 Occurrence Handle10.1137/1034116
J. Xu L. Zikatanov (2002) ArticleTitleThe method of alternating projections and the method of subspace corrections on Hilbert space J. AMS 15 1429–1446 Occurrence Handle1896233
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shu, S., Sun, D. & Xu, J. An Algebraic Multigrid Method for Higher-order Finite Element Discretizations. Computing 77, 347–377 (2006). https://doi.org/10.1007/s00607-006-0162-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-006-0162-6