Skip to main content
Log in

A Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a finite volume method for a two-dimensional Black-Scholes equation with stochastic volatility governing European option pricing. In this work, we first formulate the Black-Scholes equation with a tensor (or matrix) diffusion coefficient into a conservative form. We then present a finite volume method for the resulting equation, based on a fitting technique proposed for a one-dimensional Black-Scholes equation. We show that the method is monotone by proving that the system matrix of the discretized equation is an M-matrix. Numerical experiments, performed to demonstrate the usefulness of the method, will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • G. Allen Particlede N. D R. V. Southwell (1955) ArticleTitleRelaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder Quart. J. Mech. Appl. Math. 8 129 Occurrence Handle16,1171a

    MathSciNet  Google Scholar 

  • F. Black M. Scholes (1973) ArticleTitleThe pricing of options and corporate liabilities J. Polit. Econ. 81 637–659 Occurrence Handle10.1086/260062

    Article  Google Scholar 

  • G. Courtadon (1982) ArticleTitleA more accurate finite difference approximation for the valuation of options J. Finan. Econ. Quant. Anal. 17 697–703 Occurrence Handle10.2307/2330857

    Article  Google Scholar 

  • S. I. Heston (1993) ArticleTitleA closed-form solution for options with stochastic volatility with applications to bond and currency options Rev. Finan. Stud. 6 IssueID2 327–343 Occurrence Handle10.1093/rfs/6.2.327

    Article  Google Scholar 

  • J. Hull A. White (1987) ArticleTitleThe pricing of options on assets with stochastic volatilities J. Finance 42 IssueID2 281–300

    Google Scholar 

  • Y. K. Kwok (1998) Mathematical models of financial derivatives Springer Singapore

    Google Scholar 

  • J. J. H. Miller S. Wang (1994) ArticleTitleA new non-conforming Petrov-Galerkin method with triangular elements for a singularly perturbed advection-diffusion problem IMA J. Numer. Anal. 14 257–276 Occurrence Handle95a:65190

    MathSciNet  Google Scholar 

  • J. J. H. Miller S. Wang (1994) ArticleTitleAn exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems J. Comp. Phys. 115 IssueID1 56–64 Occurrence Handle10.1006/jcph.1994.1178 Occurrence Handle95f:76081

    Article  MathSciNet  Google Scholar 

  • L. C. G. Rogers D. Tallay (1997) Numerical methods in finance Cambridge University Press Cambridge

    Google Scholar 

  • E. Schwartz (1977) ArticleTitleThe valuation of warrants: implementing a new approach J. Finan. Econ. 13 79–93 Occurrence Handle10.1016/0304-405X(77)90037-X

    Article  Google Scholar 

  • R.S. Varga (1962) Matrix iterative analysis Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  • S. Wang (1997) ArticleTitleA novel exponentially fitted triangular finite element method for an advection-diffusion problem with boundary layers J. Comp. Phys. 134 253–260 Occurrence Handle10.1006/jcph.1997.5691 Occurrence Handle0897.76056

    Article  MATH  Google Scholar 

  • S. Wang (2004) ArticleTitleA novel fitted finite volume method for the Black-Scholes equation governing option pricing IMA J. Numer. Anal. 24 699–720 Occurrence Handle10.1093/imanum/24.4.699 Occurrence Handle1066.58013 Occurrence Handle2005i:91069

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, S., Yang, X. Q., Teo, K. L.: A power penalty method for a linear complementarity problem arising from American option valuation. J. Optimiz. Theory App. (to appear).

  • P. Wilmott J. Dewynne S. Howison (1993) Option pricing: mathematical models and computation Oxford Financial Press Oxford

    Google Scholar 

  • R. Zvan P. A. Forsyth K. R. Vetzal (1998) ArticleTitlePenalty methods for American options with stochastic volatility J. Comp. Appl. Math. 91 IssueID2 199–218 Occurrence Handle10.1016/S0377-0427(98)00037-5 Occurrence Handle99b:90025

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-S. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CS., Hung, CH. & Wang, S. A Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities. Computing 77, 297–320 (2006). https://doi.org/10.1007/s00607-006-0164-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-006-0164-4

AMS Subject Classifications

Keywords