Summary
In computational fluid dynamics, linear constraints on the fluid velocity lead to challenging indefinite linear systems of equations. In this paper, we propose to compute an approximation to the constrained linear space of divergence-free functions using hierarchical matrix techniques. This approach will yield a data-sparse, well-conditioned basis of the desired subspace in almost optimal computational complexity which is confirmed by numerical tests. The novelty of this paper lies in the application of hierarchical matrix techniques to orthogonal factorization as well as the construction of an explicit approximation to the subspace basis.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adlers, M.: Computing sparse orthogonal factors in MATLAB, Technical Report LiTH-MAT-R-1998-19, Linköpings Universitet (1998)
Alotto P. and Perugia I. (1999). Mixed finite element methods and tree-cotree implicit condensation. CALCOLO 36: 233–248
Amestoy P.R., Duff I.S. and Puglisi C. (1996). Multifrontal QR factorization in a multiprocessor environment. Numer Linear Algebra Appl 3: 275–300
Arioli M. and Baldini L. (2001). A backward error analysis of a null space algorithm in sparse quadratic programming. SIAM J Matrix Anal Appl 23: 425–442
Arioli M. and Manzini G. (2003). Null space algorithm and spanning trees in solving Darcy’s equation. BIT 43: 839–848
Arioli M., Maryska J., Rozloznik M. and Tuma M. (2005). Dual variable methods for mixed-hybrid finite element approximation of the potential fluid flow problem in porous media. ETNA 22: 17–40
Bebendorf M. (2007). Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM Numer Anal 45: 1472–1494
Benzi M., Golub G.H. and Liesen J. (2005). Numerical solution of saddle point problems. Acta Numer 14: 1–137
Börm S. (2006). \({\mathcal H}^2\) -matrix arithmetics in linear complexity. Computing 77: 1–28
Börm, S., Grasedyck, L.: HLib version 1.3 (available at http://www.hlib.org)
Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices, 2003. Lecture Notes No. 21, Max-Planck-Institute for Mathematics in the Sciences, Leipzig (2006) (available at http://www. mis.mpg.de/preprints/ln/)
Brezzi F. and Fortin M. (1991). Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York
Coleman T.F. and Pothen A. (1986). The null-space problem I: complexity. SIAM Algebra Discrete Math 7: 527–537
Coleman T.F. and Pothen A. (1987). The null-space problem II: algorithms. SIAM Algebra Discrete Math 8: 544–563
Fletcher R. and Johnson T. (1997). On the stability of null-space methods for KKT systems. SIAM J Matrix Anal Appl 18: 938–958
Gill P.H., Murray W. and Wright M.H. (1981). Practical optimization. Academic, London
Grasedyck L. and Hackbusch W. (2003). Construction and arithmetics of \({\mathcal{H}}\) -matrices. Computing 70: 295–334
Grasedyck, L., Kriemann, R., Le Borne, S.: Parallel black box domain decomposition based \({\mathcal{H}}\) -LU preconditioning, Technical Report 115, Max-Planck-Institute for Mathematics in the Sciences (2005)
Grasedyck L. and Le Borne S. (2006). \({\mathcal{H}}\) -matrix preconditioners in convection-dominated problems. SIAM J Matrix Anal 27: 1172–1183
Griffiths D.F. (1981). An approximately divergence-free 9-node velocity element for incompressible flows. Int J Numer Meth Fluids 1: 323–346
Gustafson K. and Hartman R. (1983). Divergence-free basis for finite element schemes in hydrodynamics. SIAM J Numer Anal 20: 697–721
Hackbusch W. (1999). A sparse matrix arithmetic based on \({\mathcal{H}}\) -matrices. Part I: introduction to \({\mathcal{H}}\) -matrices. Computing 62: 89–108
Hackbusch W., Grasedyck L. and Börm S. (2002). An introduction to hierarchical matrices. Math Bohem 127: 229–241
Hall C. and Ye X. (1992). Construction of null bases for the divergence operator associated with incompressible Navier–Stokes equations. J Linear Algebra Appl 171: 9–52
Ibragimov I., Rjasanow S. and Straube K. (2007). Hierarchical Cholesky decomposition of sparse matrices arising from curl–curl-equations. J Numer Math 15: 31–58
Lewis, J. G., Pierce, D. J., Wah, D. K.: Multifrontal Householder QR factorization, Technical Report ECA-TR-127, Boing Computer Services, Seattle (1989)
Lintner M. (2004). The eigenvalue problem for the 2D Laplacian in \({\mathcal{H}}\) -matrix arithmetic and application to the heat and wave equation. Computing 72: 293–323
Lintner, M.: Lösung der 2D Wellengleichung mittels hierarchischer Matrizen. PhD thesis, Technische Universität München (2002)
Lu S.-M. and Barlow J.L. (1996). Multifrontal computation with the orthogonal factors of sparse matrices. SIAM J Matrix Anal Appl 17: 658–679
Matstoms P. (1994). Sparse QR factorization in MATLAB. ACM Trans Math Software 20: 136–159
Matstoms P. (1995). Parallel sparse QR factorization on shared memory architectures. Parallel Comput 21: 473–486
Oliveira S. and Yang F. (2007). An algebraic approach for \({\mathcal{H}}\) -matrix preconditioners. Computing 80: 169–188
Perugia I., Simoncini V. and Arioli M. (1999). Linear algebra methods in a mixed approximation of magnetostatic problems. SIAM J Sci Comput 21: 1085–1101
Sameh A.H. and Sarin V. (2002). Parallel algorithms for indefinite linear systems. Parallel Comput 28: 285–299
Sarin V. and Sameh A.H. (1998). An efficient iterative method for the generalized Stokes problem. SIAM J Sci Comput 19: 206–226
Sarin V. and Sameh A.H. (2003). Hierarchical divergence-free bases and their application to particulate flows. J Appl Mech 70: 44–49
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Le Borne, S., Cook, D. Construction of a discrete divergence-free basis through orthogonal factorization in \({\mathcal{H}}\) -arithmetic. Computing 81, 215–238 (2007). https://doi.org/10.1007/s00607-007-0251-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-007-0251-1