Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Computing
  3. Article

Application of hierarchical matrices for computing the Karhunen–Loève expansion

  • Open access
  • Published: 31 October 2008
  • Volume 84, pages 49–67, (2009)
  • Cite this article
Download PDF

You have full access to this open access article

Computing Aims and scope Submit manuscript
Application of hierarchical matrices for computing the Karhunen–Loève expansion
Download PDF
  • B. N. Khoromskij1,
  • A. Litvinenko2 &
  • H. G. Matthies2 
  • 1142 Accesses

  • 1 Altmetric

  • Explore all metrics

Abstract

Realistic mathematical models of physical processes contain uncertainties. These models are often described by stochastic differential equations (SDEs) or stochastic partial differential equations (SPDEs) with multiplicative noise. The uncertainties in the right-hand side or the coefficients are represented as random fields. To solve a given SPDE numerically one has to discretise the deterministic operator as well as the stochastic fields. The total dimension of the SPDE is the product of the dimensions of the deterministic part and the stochastic part. To approximate random fields with as few random variables as possible, but still retaining the essential information, the Karhunen–Loève expansion (KLE) becomes important. The KLE of a random field requires the solution of a large eigenvalue problem. Usually it is solved by a Krylov subspace method with a sparse matrix approximation. We demonstrate the use of sparse hierarchical matrix techniques for this. A log-linear computational cost of the matrix-vector product and a log-linear storage requirement yield an efficient and fast discretisation of the random fields presented.

Article PDF

Download to read the full article text

Similar content being viewed by others

Solution Algorithms for Stochastic Galerkin Discretizations of Differential Equations with Random Data

Chapter © 2017

The uniform sparse FFT with application to PDEs with random coefficients

Article Open access 10 October 2022

Stochastic Methods for Solving High-Dimensional Partial Differential Equations

Chapter © 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Artificial Intelligence
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge monographs on applied and computational mathematics, vol 4. Cambridge University Press, Cambridge

  2. Babuška I, Tempone R, Zouraris GE (2004) Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J Numer Anal 42(2):800–825 (electronic)

    Google Scholar 

  3. Babuška I, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 45(3):1005–1034 (electronic)

    Google Scholar 

  4. Bai Z, Demmel J, Dongarra J, Ruhe A, van der Vorst H (eds) (2000) Templates for the solution of algebraic eigenvalue problems— practical guide, vol 11 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

  5. Bebendorf M (2000) Approximation of boundary element matrices. Numer Math 86(4): 565–589

    Article  MATH  MathSciNet  Google Scholar 

  6. Bebendorf M, Hackbusch W (2007) Stabilized rounded addition of hierarchical matrices. Numer Linear Algebra Appl 14(5): 407–423

    Article  MathSciNet  MATH  Google Scholar 

  7. Bebendorf M, Rjasanow S (2003) Adaptive low-rank approximation of collocation matrices. Computing 70(1): 1–24

    Article  MATH  MathSciNet  Google Scholar 

  8. Börm S, Grasedyck L (2005) Hybrid cross approximation of integral operators. Numer Math 101(2): 221–249

    Article  MATH  MathSciNet  Google Scholar 

  9. Börm S, Grasedyck L, Hackbusch W (2003) Hierarchical Matrices, Lecture Note. Max-Planck Institute for Mathematics, Leipzig

    Google Scholar 

  10. Eiermann M, Ernst OG, Ullmann E (2007) Computational aspects of the stochastic finite element method. Comput Vis Sci 10(1): 3–15

    Article  MATH  MathSciNet  Google Scholar 

  11. Elman HC, Ernst OG, O’Leary DP, Stewart M (2005) Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering. Comput Methods Appl Mech Eng 194(9–11): 1037–1055

    Article  MATH  MathSciNet  Google Scholar 

  12. Frigo M, Johnson S (1998) FFTW: An adaptive software architecture for the FFT. In: Proc. ICASSP, IEEE, Seattle, WA, (3):1381–1384. http://www.fftw.org

  13. Ghanem R, Spanos D (1991) Spectral stochastic finite-element formulation for reliability analysis. J Eng Mech 117(10): 2351–2370

    Article  Google Scholar 

  14. Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, New York

    MATH  Google Scholar 

  15. Goreinov SA, Tyrtyshnikov EE, Zamarashkin NL (1997) A theory of pseudoskeleton approximations. Linear Algebra Appl 261: 1–21

    Article  MATH  MathSciNet  Google Scholar 

  16. Grasedyck L, Börm S: \({\mathcal{H}}\) -matrix library. http://www.hlib.org

  17. Grasedyck L, Hackbusch W (2003) Construction arithmetics of \({\mathcal{H}}\)-matrices. Computing 70(4): 295–334

    Article  MATH  MathSciNet  Google Scholar 

  18. Hackbusch W, Khoromskij BN (2000) A sparse \({\mathcal{H}}\)-matrix arithmetic. II. Application to multi-dimensional problems. Computing 64(1): 21–47

    MATH  MathSciNet  Google Scholar 

  19. Hackbusch W (1995) Integral equations, vol 120 of International Series of Numerical Mathematics. Birkhäuser Verlag, Basel, 1995. Theory and numerical treatment, Translated and revised by the author from the 1989 German original

  20. Hackbusch W (1999) A sparse matrix arithmetic based on \({\mathcal{H}}\)-matrices. I. Introduction to \({\mathcal{H}}\)-matrices. Computing 62(2): 89–108

    Article  MATH  MathSciNet  Google Scholar 

  21. Hackbusch W (2004) Hierarchische Matrizen—Algorithmen und Analysis. Max-Planck-Institut für Mathematik, Leipzig

    Google Scholar 

  22. Hackbusch W, Khoromskij BN, Kriemann R (2004) Hierarchical matrices based on a weak admissibility criterion. Computing 73(3): 207–243

    Article  MATH  MathSciNet  Google Scholar 

  23. Hackbusch W, Khoromskij BN, Tyrtyshnikov EE (2005) Hierarchical Kronecker tensor-product approximations. J Numer Math 13(2): 119–156

    Article  MATH  MathSciNet  Google Scholar 

  24. Hida T, Kuo H-H, Potthoff J, Streit L (1993) White noise—an infinite-dimensional calculus, vol 253 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1993)

  25. Keese A (2004) Numerical solution of systems with stochastic uncertainties. A general purpose framework for stochastic finite elements. Ph.D. Thesis, TU Braunschweig, Germany

  26. Lanczos C (1995) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Nat Bur Standards 45: 255–282

    MathSciNet  Google Scholar 

  27. Lehoucq RB, Sorensen DC, Yang C (1998) ARPACK users’ guide. Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, vol 6 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

  28. Loève, M (1977) Probability theory I. Graduate Texts in Mathematics, vol 45, 6, 4th edn. Springer, New York

  29. Matthies HG (2007) Uncertainty quantification with stochastic finite elements. Part 1. Fundamentals. Encyclopedia of Computational Mechanics. Wiley, New York

  30. Matthies HG, Keese A (2005) Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng 194(12–16): 1295–1331

    Article  MATH  MathSciNet  Google Scholar 

  31. Pellissetti MF, Ghanem R (2000) Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv Eng Softw 31(8–9): 607–616

    Article  MATH  Google Scholar 

  32. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C—the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

  33. Riesz F, Sz.-Nagy B (1990) Functional analysis. Dover Books on Advanced Mathematics. Dover Publications Inc., New York, 1990. Translated from the second French edition by Leo F. Boron, Reprint of the 1955 original

  34. Saad Y (1992) Numerical methods for large eigenvalue problems. Manchester University Press, Manchester

    MATH  Google Scholar 

  35. Schwab C, Todor RA (2003) Sparse finite elements for elliptic problems with stochastic loading. Numer Math 95(4): 707–734

    Article  MATH  MathSciNet  Google Scholar 

  36. Schwab C, Todor RA (2003) Sparse finite elements for stochastic elliptic problems—higher order moments. Computing 71: 43–63

    Article  MATH  MathSciNet  Google Scholar 

  37. Schwab C, Todor RA (2006) Karhunen–Loève approximation of random fields by generalized fast multipole methods. J Comput Phys 217(1): 100–122

    Article  MATH  MathSciNet  Google Scholar 

  38. Seynaeve B, Rosseel E, Nicolaï B, Vandewalle S (2007) Fourier mode analysis of multigrid methods for partial differential equations with random coefficients. J Comput Phys 224(1): 132–

    Article  MATH  MathSciNet  Google Scholar 

  39. Todor RA, Schwab C (2007) Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J Numer Anal 27(2): 232–261

    Article  MATH  MathSciNet  Google Scholar 

  40. Werner D (2000) Funktionalanalysis, extended edn. Springer, Berlin

  41. Wiener N (1938) The homogeneous chaos. Am J Math 60: 897–936

    Article  MathSciNet  Google Scholar 

  42. Wu K, Simon H (2000) Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J Matrix Anal Appl 22(2):602–616 (electronic)

    Google Scholar 

Download references

Acknowledgments

The authors are appreciative to Eveline Rosseel (K.U.Leuven, Department of Computer Science, Belgium) for valuable comments. We would like also to thank our student Jeremy Rodriguez for the help in providing Tables 1, 2, 5, 6 and 7. It is also acknowledged that this research has been conducted within the project MUNA under the framework of the German Luftfahrtforschungsprogramm funded by the Ministry of Economics (BMWA).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany

    B. N. Khoromskij

  2. Institut für Wissenschaftliches Rechnen, Hans-Sommer Str. 65, 38106, Brunswick, Germany

    A. Litvinenko & H. G. Matthies

Authors
  1. B. N. Khoromskij
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. A. Litvinenko
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. H. G. Matthies
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to A. Litvinenko.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Khoromskij, B.N., Litvinenko, A. & Matthies, H.G. Application of hierarchical matrices for computing the Karhunen–Loève expansion. Computing 84, 49–67 (2009). https://doi.org/10.1007/s00607-008-0018-3

Download citation

  • Received: 26 August 2008

  • Accepted: 30 September 2008

  • Published: 31 October 2008

  • Issue Date: April 2009

  • DOI: https://doi.org/10.1007/s00607-008-0018-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Hierarchical matrix
  • Data-sparse approximation
  • Karhunen–Loève expansion
  • Uncertainty quantification
  • Random fields
  • Eigenvalue computation

Mathematics Subject Classification (2000)

  • 60H15
  • 60H35
  • 65N25
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature