Skip to main content
Log in

Efficient reformulation and solution of a nonlinear PDE-controlled flow network model

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We consider a flow network where the flow of parts can be controlled at the vertices of the network. Based on a modified coarse grid discretization presented in Fügenschuh et al. (SIAM J Scientific Comput 30(3):1490–1507, 2008) we derive a mixed-integer program (MIP). Under suitable assumptions on the cost functional we prove that there exists an equivalent linear program (LP). We present numerical results concerning validity of our result and show the improvement of the computing times using the equivalent LP over the MIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice Hall, New Jersey

    Google Scholar 

  2. Armbruster D, de Beer C, Freitag M, Jagalski T, Ringhofer C (2006) Autonomous control of production networks using a pheromone approach. Phys A 363(1): 104–114

    Article  Google Scholar 

  3. Armbruster D, Degond P, Ringhofer C (2006) A model for the dynamics of large queuing networks and supply chains. SIAM J Appl Math 66(3): 896–920

    Article  MATH  MathSciNet  Google Scholar 

  4. Armbruster D, Degond P, Ringhofer C (2007) Kinetic and fluid models for supply chains supporting policy attributes. Bull Inst Math Acad Sin 2(2): 433–460

    MATH  MathSciNet  Google Scholar 

  5. Armbruster D, Marthaler D, Ringhofer C (2004) Kinetic and fluid model hierarchies for supply chains. SIAM J Multiscale Model Simul 2(1): 43–61

    Article  MATH  MathSciNet  Google Scholar 

  6. Courant R, Friedrichs K, Lewy H (1928). Über die partiellen Differenzengleichungen der mathematischen Physik. Math Ann 100: 32–74

    Article  MATH  MathSciNet  Google Scholar 

  7. Dittel A, Fügenschuh A, Göttlich S, Herty M (2009) MIP presolve techniques for a PDE-based supply chain model. In: Optimization Methods & Software (to appear)

  8. Fügenschuh A, Göttlich S, Herty M (2007) A new modeling approach for an integrated simulation and optimization of production networks. In: Günther H-O, Mattfeld D, Suhl L (eds) Management logistischer Netzwerke. Physica-Verlag, Heidelberg, pp 45–60

    Chapter  Google Scholar 

  9. Fügenschuh A, Göttlich S, Herty M, Klar A, Martin A (2008) A discrete optimization approach to large scale supply networks based on partial differential equations. SIAM J Sci Comput 30(3): 1490–1507

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman and Company, New York

    MATH  Google Scholar 

  11. Göttlich S, Herty M, Klar A (2005) Network models for supply chains. Comm Math Sci 3(4): 545–559

    MATH  Google Scholar 

  12. Göttlich S, Herty M, Klar A (2006) Modelling and optimization of supply chains on complex networks. Comm Math Sci 4(2): 315–330

    MATH  Google Scholar 

  13. Göttlich S, Herty M, Kirchner C, Klar A (2006) Optimal control for continuous supply network models. Netw Heterog Media 1(4): 675–688

    MATH  MathSciNet  Google Scholar 

  14. Herty M, Klar A, Piccoli B (2007) Existence of solutions for supply chain networks based on partial differential equations. SIAM J Math Anal 39(1): 160–173

    Article  MATH  MathSciNet  Google Scholar 

  15. ILOG CPLEX Division, Alder Avenue, Suite 200, Incline Village, NV 89451, USA. Information available at URL http://www.cplex.com

  16. Koch T (2004) Rapid mathematical programming. Ph.D. Thesis, Berlin

  17. Nemhauser G, Wolsey L (1988) Integer and combinatorial optimization. Wiley/Interscience/Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fügenschuh, A., Göttlich, S., Herty, M. et al. Efficient reformulation and solution of a nonlinear PDE-controlled flow network model. Computing 85, 245–265 (2009). https://doi.org/10.1007/s00607-009-0038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0038-7

Keywords

Mathematics Subject Classification (2000)

Navigation