Skip to main content
Log in

Linear algebra for tensor problems

  • Published:
Computing Aims and scope Submit manuscript

Abstract

By a tensor problem in general, we mean one where all the data on input and output are given (exactly or approximately) in tensor formats, the number of data representation parameters being much smaller than the total amount of data. For such problems, it is natural to seek for algorithms working with data only in tensor formats maintaining the same small number of representation parameters—by the price of all results of computation to be contaminated by approximation (recompression) to occur in each operation. Since approximation time is crucial and depends on tensor formats in use, in this paper we discuss which are best suitable to make recompression inexpensive and reliable. We present fast recompression procedures with sublinear complexity with respect to the size of data and propose methods for basic linear algebra operations with all matrix operands in the Tucker format, mostly through calls to highly optimized level-3 BLAS/LAPACK routines. We show that for three-dimensional tensors the canonical format can be avoided without any loss of efficiency. Numerical illustrations are given for approximate matrix inversion via proposed recompression techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bader BW, Kolda TG (2006) Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans Math Softw 32(4): 635–653

    Article  MathSciNet  Google Scholar 

  2. Beylkin G, Mohlenkamp MJ (2002) Numerical operator calculus in higher dimensions. Proc Natl Acad Sci USA 99(16): 10246–10251

    Article  MATH  MathSciNet  Google Scholar 

  3. Bro R (1997) PARAFAC: tutorial and applications. Chemom Intell Lab Syst 38(2): 149–171

    Article  Google Scholar 

  4. Caroll JD, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 35: 283–319

    Article  Google Scholar 

  5. Comon P (2000) Tensor decomposition: state of the art and applications. In: IMA Conference Mathematics in Signal Processing, Warwick, UK

  6. Eldén L, Savas B (2009) A newton-grassmann method for computing the best multilinear rank-(r 1, r 2, r 3) approximation of a tensor. SIAM J Matrix Anal Appl 31(2): 248–271

    Article  MathSciNet  MATH  Google Scholar 

  7. Flad H-J, Khoromskij BN, Savostyanov DV, Tyrtyshnikov EE (2008) Verification of the cross 3D algorithm on quantum chemistry data. Rus J Numer Anal Math Model 23(4): 210–220

    MathSciNet  Google Scholar 

  8. Ford JM, Tyrtyshnikov EE (2003) Combining Kronecker product approximation with discrete wavelet transforms to solve dense, function-related systems. SIAM J Sci Comput 25(3): 961–981

    Article  MATH  MathSciNet  Google Scholar 

  9. Goreinov SA (2008) On cross approximation of multi-index array. Doklady Math 420(4): 1–3

    MathSciNet  Google Scholar 

  10. Goreinov SA, Tyrtyshnikov EE (2001) The maximal-volume concept in approximation by low-rank matrices. Contemp Math 208: 47–51

    MathSciNet  Google Scholar 

  11. Goreinov SA, Tyrtyshnikov EE, Zamarashkin NL (1997) A theory of pseudo-skeleton approximations. Linear Algebra Appl 261: 1–21

    Article  MATH  MathSciNet  Google Scholar 

  12. Hackbusch W, Khoromskij BN, Tyrtyshnikov EE (2005) Hierarchical Kronecker tensor-product approximations. J Numer Math 13: 119–156

    Article  MATH  MathSciNet  Google Scholar 

  13. Hackbusch W, Khoromskij BN, Tyrtyshnikov EE (2008) Approximate iterations for structured matrices. Numer Mathematik 109(3): 365–383

    Article  MATH  MathSciNet  Google Scholar 

  14. Harshman RA (1970) Foundations of the Parafac procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Working Papers in Phonetics 16: 1–84

    Google Scholar 

  15. de Lathauwer L, de Moor B, Vandewalle J (2000) A multlinear singular value decomposition. SIAM J Matrix Anal Appl 21: 1253–1278

    Article  MATH  MathSciNet  Google Scholar 

  16. de Lathauwer L, de Moor B, Vandewalle J (2000) On best rank-1 and rank-(R 1, R 2, . . . , R N ) approximation of high-order tensors. SIAM J Matrix Anal Appl 21: 1324–1342

    Article  MATH  MathSciNet  Google Scholar 

  17. de Lathauwer L, de Moor B, Vandewalle J (2004) Computing of canonical decomposition by means of a simultaneous generalized Schur decomposition. SIAM J Matrix Anal Appl 26: 295–327

    Article  MATH  MathSciNet  Google Scholar 

  18. Olshevsky V, Oseledets IV, Tyrtyshnikov EE (2008) Superfast inversion of two-level Toeplitz matrices using Newton iteration and tensor-displacement structure. Oper Theory Adv Appl 179: 229–240

    Article  MathSciNet  Google Scholar 

  19. Oseledets IV, Savostianov DV, Tyrtyshnikov EE (2008) Tucker dimensionality reduction of three-dimensional arrays in linear time. SIAM J Matrix Anal Appl 30(3): 939–956

    Article  MathSciNet  Google Scholar 

  20. Oseledets IV, Savostyanov DV, Tyrtyshnikov EE (2009) Fast simultaneous orthogonal reduction to triangular matrices. SIAM J Matrix Anal Appl 31(2): 316–330

    Article  MathSciNet  MATH  Google Scholar 

  21. Oseledets IV, Tyrtyshnikov EE (2005) Approximate inversion of matrices in the process of solving a hypersingular integral equation. Comput Math Math Phys 45(2): 302–313

    MathSciNet  Google Scholar 

  22. Oseledets IV, Tyrtyshnikov EE, Zamarashkin NL (2009) Matrix inversion cases with size-independent rank estimates. Linear Algebra Appl 431(5–7): 558–570

    Article  MATH  MathSciNet  Google Scholar 

  23. Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31: 279–311

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Oseledets.

Additional information

Communicated by W. Hackbusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oseledets, I.V., Savostyanov, D.V. & Tyrtyshnikov, E.E. Linear algebra for tensor problems. Computing 85, 169–188 (2009). https://doi.org/10.1007/s00607-009-0047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0047-6

Keywords

Mathematics Subject Classification (2000)

Navigation