Skip to main content
Log in

Wavelet BEM on molecular surfaces: parametrization and implementation

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The present paper is dedicated to the rapid solution of boundary integral equations arising from solvation continuum models. We apply a fully discrete wavelet Galerkin scheme for the computation of the apparent surface charge on van der Waals or solvent accessible surfaces. The molecular surface is described in parametric form as a set of four-sided spherical patches. Each patch is exactly represented as rational Bézier surface. Numerical results are reported to illustrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beylkin G, Coifman R, Rokhlin V (1991) The fast wavelet transform and numerical algorithms. Comm Pure Appl Math 44: 141–183

    Article  MATH  MathSciNet  Google Scholar 

  2. Brunnett G (1995) Geometric design with trimmed surfaces. Comput Suppl 10: 101–115

    Google Scholar 

  3. Cancés E, Mennucci B (1998) New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals. J Math Chem 23: 309–326

    Article  MATH  MathSciNet  Google Scholar 

  4. Cohen A, Daubechies I, Feauveau J-C (1992) Biorthogonal bases of compactly supported wavelets. Pure Appl Math 45: 485–560

    Article  MATH  MathSciNet  Google Scholar 

  5. Connolly M (1983) Analytical molecular surface calculation. J Appl Cryst 16: 548–558

    Article  Google Scholar 

  6. Connolly M (2006) Molecular surface guide. http://connolly.best.vwh.net

  7. Dahmen W, Harbrecht H, Schneider R (2006) Compression techniques for boundary integral equations—optimal complexity estimates. SIAM J Numer Anal 43: 2251–2271

    Article  MATH  MathSciNet  Google Scholar 

  8. Dahmen W, Harbrecht H, Schneider R (2007) Adaptive methods for boundary integral equations: complexity and convergence estimates. Math Comput 76: 1243–1274

    Article  MATH  MathSciNet  Google Scholar 

  9. Dahmen W, Kunoth A (1992) Multilevel preconditioning. Numer Math 63: 315–344

    Article  MATH  MathSciNet  Google Scholar 

  10. DALTON, a molecular electronic structure program, Release 2.0 (2005). http://www.kjemi.uio.no/software/dalton/dalton.html

  11. Dietz R, Hoschek J, Jüttler B (1995) Rational patches on quadric surfaces. Comput Aided Des 27: 27–40

    Article  MATH  Google Scholar 

  12. Farin G (1999) Curves and surfaces for CAGD: a practical guide. Academic Press

  13. Frediani L, Cammi R, Corni S, Tomasi J (2004) A polarizable continuum model for molecules at diffuse interfaces. J Chem Phys 120: 3893–3907

    Article  Google Scholar 

  14. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulation. J Comput Phys 73: 325–348

    Article  MATH  MathSciNet  Google Scholar 

  15. Hackbusch W, Khoromskij BN (2000) A sparse \({\mathcal{H}}\) -matrix arithmetic. II: application to multi-dimensional problems. Computing 64: 21–47

    MATH  MathSciNet  Google Scholar 

  16. Hackbusch W, Nowak ZP (1989) On the fast matrix multiplication in the boundary element method by panel clustering. Numer Math 54: 463–491

    Article  MATH  MathSciNet  Google Scholar 

  17. Harbrecht H, Randrianarivony M (2007) From computer aided design to wavelet BEM. Bericht 07-18. Berichtsreihe des Mathematischen Seminars, Christian-Albrechts-University of Kiel, Germany (to appear in Comput Vis Sci)

  18. Harbrecht H, Schneider R (2004) Biorthogonal wavelet bases for the boundary element method. Math Nachr 269–270: 167–188

    Article  MathSciNet  Google Scholar 

  19. Harbrecht H, Schneider R (2002) Wavelet galerkin schemes for boundary integral equations—implementation and quadrature. SIAM J Sci Comput 27: 1347–1370

    Article  MathSciNet  Google Scholar 

  20. Hochmuth R (1998) A-posteriori estimates and adaptive schemes for transmission problems. J Integral Equ Appl 10: 1–50

    Article  MATH  MathSciNet  Google Scholar 

  21. Hoschek J, Lasser D (1993) Fundamentals of computer aided geometric design. A.K. Peters, Wellesley

    MATH  Google Scholar 

  22. Hu Q, Wang G (2007) Necessary and sufficient conditions for rational quartic representation of conic sections. J Comput Appl Math 203: 190–208

    Article  MATH  MathSciNet  Google Scholar 

  23. Korte B, Vygen J (2006) Combinatorial optimization: theory and algorithms, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  24. Laug P, Borouchaki H (2002) Molecular surface modeling and meshing. Eng Comput 18: 199–210

    Article  Google Scholar 

  25. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55: 117–129

    Article  Google Scholar 

  26. Pomelli CS (2007) Cavity surfaces and their discretization. In: Mennucci B (ed), Cammi R (Co-Editor) Continuum solvation models in chemical physics: from theory to applications. Wiley, pp 49–63

  27. Piegl L, Tiller W (1995) The NURBS book. Springer, Berlin

    MATH  Google Scholar 

  28. Pomelli C (2004) A tessellationless integration grid for the polarizable continuum model reaction field. J Comp Chem 25: 1532–1541

    Article  Google Scholar 

  29. Randrianarivony M (2006) Geometric processing of CAD data and meshes as input of integral equation solvers. PhD thesis, Technische Universität Chemnitz

  30. Randrianarivony M (2008) Quadrilateral decomposition by two-ear property resulting in CAD segmentation. In: Proc. Fifth international conference on computational geometry, pp 179–185

  31. Sanner M, Olsen A, Spehner J (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38: 305–320

    Article  Google Scholar 

  32. Schneider R (1998) Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung großer vollbesetzter Gleichungssysteme. Teubner, Stuttgart

    MATH  Google Scholar 

  33. Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems. Finite and boundary elements. Springer, New York

    MATH  Google Scholar 

  34. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105: 2999–3094

    Article  Google Scholar 

  35. Wang G-J, Wang G-Z (1992) The rational cubic Bézier representation of conics. Comput Aided Geom Des 9: 447–455

    Article  MATH  Google Scholar 

  36. Weijo V, Randrianarivony M, Harbrecht H, Frediani L (2009) Wavelet formulation of the Polarizable Continuum Model. INS-Preprint 0906, Institute for Numerical Simulation, University of Bonn (submitted)

  37. Whitley D (1998) Van der Waals graphs and molecular shape. J Math Chem 23: 377–397

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Harbrecht.

Additional information

Communicated by W. Hackbusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harbrecht, H., Randrianarivony, M. Wavelet BEM on molecular surfaces: parametrization and implementation. Computing 86, 1–22 (2009). https://doi.org/10.1007/s00607-009-0050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0050-y

Keywords

Mathematics Subject Classification (2000)

Navigation