Skip to main content
Log in

Zhang neural network solving for time-varying full-rank matrix Moore–Penrose inverse

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Zhang neural networks (ZNN), a special kind of recurrent neural networks (RNN) with implicit dynamics, have recently been introduced to generalize to the solution of online time-varying problems. In comparison with conventional gradient-based neural networks, such RNN models are elegantly designed by defining matrix-valued indefinite error functions. In this paper, we generalize, investigate and analyze ZNN models for online time-varying full-rank matrix Moore–Penrose inversion. The computer-simulation results and application to inverse kinematic control of redundant robot arms demonstrate the feasibility and effectiveness of ZNN models for online time-varying full-rank matrix Moore–Penrose inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein CA, Kee KB (1989) The nature of drift in pseudoinverse control of kinematically redundant manipulators. IEEE Trans Robot Autom 5(2): 231–234

    Article  Google Scholar 

  2. Yahagi T (1983) A deterministic approach to optimal linear digital equalizers. IEEE Trans Acoust Speech Signal Process 31(2): 491–500

    Article  Google Scholar 

  3. Liu J, Chen S, Tan X, Zhang D (2007) Efficient pseudoinverse linear discriminant analysis and its nonlinear form for face recognition. Int J Pattern Recogn Artif Intell 21(8): 1265–1278

    Article  Google Scholar 

  4. Hartmann WM, Hartwig RE (1996) Computing the Moore-Penrose inverse for the covariance matrix in constrained nonlinear estimation. SIAM J Optim 6(3): 727–747

    Article  MathSciNet  MATH  Google Scholar 

  5. Baushke HH, Borwein JM, Wang XF (2007) Fitzpatrick functions and continuous linear monotone operators. SIAM J Optim 18(3): 789–809

    Article  MathSciNet  Google Scholar 

  6. Dean P, Porrill J (1998) Pseudo-inverse control in biological systems: a learning mechanism for fixation stability. Neural Netw 11(7–8): 1205–1218

    Article  Google Scholar 

  7. Bini DA, Codevico G (2003) Barel MV solving Toeplitz least squares problems by means of Newton’s iteration. Numer Algorithms 33(1–4): 93–103

    Article  MathSciNet  MATH  Google Scholar 

  8. Wei Y, Cai J, Ng MK (2004) Computing Moore-Penrose inverses of Toeplitz matrices by Newton’s iteration. Math Comput Model 40: 181–191

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen L, Krishnamurthy EV, Macleod I (1994) Generalised matrix inversion and rank computation by successive matrix powering. Parallel Comput 20(3): 297–311

    MathSciNet  MATH  Google Scholar 

  10. Zhou J, Zhu YM, Li XR, You ZS (2002) Variants of the Greville formula with applications to exact recursive least squares. SIAM J Matrix Anal Appl 24(1): 150–164

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben-Israel A, Greville TNE (2003) Generalized inverses: theory and applications, 2nd edn. Springer-Verlag, New York

    MATH  Google Scholar 

  12. Wang H, Li J, Liu H (2006) Practical limitations of an algorithm for the singular value decomposition as applied to redundant manipulators. In: Proceedings of IEEE conference on robotics, automation and mechatronics, vol 1, pp 1–6

  13. Zhang Y, Li Z, Fan Z, Wang G (2007) Matrix-inverse primal neural network with application to robotics. Dyn Contin Discrete Impuls Syst Ser A 14: 400–407

    Google Scholar 

  14. Wang J (1997) Recurrent neural networks for computing pseudoinverses of rank-deficient matrices. SIAM J Sci Comput 18(5): 1479–1493

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang Y, Ge SS (2005) Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans Neural Netw 16(6): 1477–1490

    Article  Google Scholar 

  16. Zhang Y, Wang J (2002) A dual neural network for convex quadratic programming subject to linear equality and inequality constraints. Phys Lett A 298(4): 271–278

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang QF (2007) Theoretical and computational issues of optimal control for distributed Hopfield neural network equations with diffusion term. SIAM J Sci Comput 29(2): 890–911

    Article  MathSciNet  MATH  Google Scholar 

  18. Lingjærde OC, Liestøl K (1998) Generalized projection pursuit regression. SIAM J Sci Comput 20(3): 844–857

    Article  Google Scholar 

  19. Smaoui N (2001) A model for the unstable manifold of the bursting behavior in the 2d Navier-Stokes flow. SIAM J Sci Comput 23(3): 824–840

    Article  MathSciNet  MATH  Google Scholar 

  20. Driessche PVD, Zou XF (1998) Global attractivity in delayed Hopfield neural network models. SIAM J Appl Math 58(6): 1878–1890

    Article  MathSciNet  MATH  Google Scholar 

  21. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79: 2554–2558

    Article  MathSciNet  Google Scholar 

  22. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2: 359–366

    Article  Google Scholar 

  23. Yildiz N (2005) Layered feedforward neural network is relevant to empirical physical formula construction: a theoretical analysis and some simulation results. Phys Lett A 345(1–3): 69–87

    Article  MATH  Google Scholar 

  24. Wei Y (2000) Recurrent neural networks for computing weighted Moore-Penrose inverse. Appl Math Comput 116(3): 279–287

    Article  MathSciNet  MATH  Google Scholar 

  25. Wei Y, Wu H, Wei J (2000) Successive matrix squaring algorithm for parallel computing the weighted generalized inverse \({A^+_{MN}}\) . Appl Math Comput 116(3): 289–296

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang Y, Jiang D, Wang J (2002) A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans Neural Netw 13(5): 1053–1063

    Article  Google Scholar 

  27. Zhang Y, Li Z (2009) Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints. Phys Lett A 373(18–19): 1639–1643

    Article  Google Scholar 

  28. Zhang Y, Peng H (2007) Zhang neural network for linear time-varying equation solving and its robotic application. In: Proceedings of the 6th international conference on machine learning and cybernetics, vol 1, pp 3543–3548

  29. Zhang Y, Fan Z, Li Z (2007) Zhang neural network for online solution of time-varying Sylvester equation. In: Proceedings of the 2nd international symposium on intelligent computation and application. Lecture notes on bioinformatics, pp 276–285

  30. The MathWorks Inc (2007) Using Simulink, version 6.6, Natick, MA

  31. Fill JA, Fishkind DE (1999) The Moore–Penrose generalized inverse for sums of matrices. SIAM J Matrix Anal Appl 21(2): 629–635

    Article  MathSciNet  Google Scholar 

  32. Parks-Gornet J, Imam IN (1989) Using rank factorization in calculating the Moore-Penrose generalized inverse. In: Proceedings of IEEE energy and information technologies in the southeast, vol 2, pp 427–431

  33. Wiesel A, Eldar YC, Shamai S (2008) Zero-forcing precoding and generalized inverses. IEEE Trans Signal Process 56(9): 4409–4418

    Article  MathSciNet  Google Scholar 

  34. Ge SS, Lee TH, Harris CJ (1998) Adaptive neural network control of robotic manipulators. World Scientific, London

    Google Scholar 

  35. Zhang Y, Wang J (2002) Global exponential stability of recurrent neural networks for synthesizing linear feedback control systems via pole assignment. IEEE Trans Neural Netw 13(3): 633–644

    Article  Google Scholar 

  36. Zhang Y, Chen K (2008) Global exponential convergence and stability of Wang neural network for solving online linear equations. Electron Lett 44(2): 145–146

    Article  Google Scholar 

  37. Zhang Y (2005) Revisit the analog computer and gradient-based neural system for matrix inversion. In: Proceedings of IEEE international symposium on intelligent control, pp 1411–1416

  38. Zhang Y, Ma W, Cai B (2009) From Zhang neural network to Newton iteration for matrix inversion. IEEE Trans Circuits-I 56(7): 1405–1415

    Article  MathSciNet  Google Scholar 

  39. Zhang Y, Cai B, Liang M, Ma W (2008) On the variable step-size of discrete-time Zhang neural network and Newton iteration for constant matrix inversion. In: Proceedings of the 2nd international symposium on intelligent information technology application, vol 1, pp 34–38

  40. Zhang Y, Guo X, Ma W (2008) Modeling and simulation of Zhang neural network for online linear time-varying equations solving based on MATLAB Simulink. In: Proceedings of the 7th international conference on machine learning and cybernetics, pp 805–810

  41. Zhang Y, Guo X, Ma W, Chen K, Cai B (2008) MATLAB Simulink modeling and simulation of Zhang neural network for online time-varying matrix inversion. In: Proceedings of IEEE international conference on networking, sensing and control, pp 1480–1485

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, Y., Tan, N. et al. Zhang neural network solving for time-varying full-rank matrix Moore–Penrose inverse. Computing 92, 97–121 (2011). https://doi.org/10.1007/s00607-010-0133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-010-0133-9

Keywords

Mathematics Subject Classification (2000)

Navigation