Skip to main content
Log in

Enabling coupled multi-scale, multi-field experiments through choreographies of data-driven scientific simulations

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Current systems for enacting scientific experiments, and simulation workflows in particular, do not support multi-scale and multi-field problems if they are not coupled on the level of the mathematical model. To address this deficiency, we present an approach enabling the trial-and-error modeling and execution of multi-scale and/or multi-field simulations in a top-down and bottom-up manner which is based on the notion of choreographies. The approach defines techniques for composing data-intensive, scientific workflows in more complex simulations in a generic, domain-independent way and thus provides means for collaborative and integrated data management using the workflow/process-based paradigm. We contribute a life cycle definition of such simulations and present in detail concepts and techniques that support all life cycle phases. Furthermore, requirements on a respective software system and choreography language supporting multi-scale and/or multi-field simulations are identified, and an architecture and its realization are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. SimTech: http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/.

  2. http://www.mcs.anl.gov/research/projects/mpi/.

References

  1. Andrikopoulos V, Gómez Sáez S, Karastoyanova D, Weiß A (2014) Collaborative, dynamic and complex systems: modeling, provision and execution. In: CLOSER’14, pp 276–286

  2. Bauer B et al (2011) The ALPS project release 2.0: open source software for strongly correlated systems. J Stat Mech Theory Exp 2011(05):P05,001

    Article  Google Scholar 

  3. Barga R, Gannon D (2007) Scientific versus business workflows. In: Workflows for e-Science. Springer, Berlin, pp 9–16

  4. Barros A, Dumas M, Hofstede AHMT (2005) Service interaction patterns. In: BPM’05. Springer, Berlin, pp 302–318

  5. Binkele P (2006) Atomistische Modellierung und Computersimulation der Ostwald-Reifung von Ausscheidungen beim Einsatz von kupferhaltigen Stählen. Ph.D. thesis, University of Stuttgart, Stuttgart

  6. Binz T, Breitenbücher U, Haupt F, Kopp O, Leymann F, Nowak A, Wagner S (2013) OpenTOSCA: a runtime for TOSCA-based cloud applications. In: ICSOC’13. Springer, Berlin, pp 694–697

  7. Bucchiarone A, Marconi A, Pistore M, Raik H (2012) Dynamic adaptation of fragment-based and context-aware business processes. In: ICWS’12, pp 33–41

  8. Davidson SB, Freire J (2008) Provenance and scientific workflows: challenges and opportunities. In: ACM SIGMOD management of data’08, pp 1345–1350

  9. Decker G, Kopp O, Barros A (2008) An introduction to service choreographies. Inf Technol 50(2):122–127. doi:10.1524/itit.2008.0473

    Google Scholar 

  10. Decker G, Kopp O, Leymann F, Weske M (2007) BPEL4Chor: extending BPEL for modeling choreographies. In: ICWS’07. IEEE Press, New York

  11. Decker G, Kopp O, Leymann F, Weske M (2009) Interacting services: from specification to execution. Data Knowl Eng 68(10):946–972

    Article  Google Scholar 

  12. Fleuren T, Götze J, Müller P (2011) Workflow skeletons: increasing scalability of scientific workflows by combining orchestration and choreography. In: ECOWS’11. IEEE Press, New York, pp 99–106

  13. Foster I, Kesselman C (2003) The Grid 2: blueprint for a new computing infrastructure. Elsevier, New York

    Google Scholar 

  14. Freire J, Koop D, Santos E, Carlos Scheidegger CS, Vo HT (2011) VisTrails. The architecture of open source applications. Lulu. http://aosabook.org/en/vistrails.html

  15. Gil Y, Deelman E, Ellisman M, Fahringer T, Fox G, Gannon D, Goble C, Livny M, Moreau L, Myers J (2007) Examining the challenges of scientific workflows. Computer 40(12):24–32

    Article  Google Scholar 

  16. Görlach K, Sonntag M, Karastoyanova D, Leymann F, Reiter M (2011) Conventional workflow technology for scientific simulation. Springer, Berlin

    Book  Google Scholar 

  17. Hahn M (2013) Approach and realization of a multi-tenant service composition engine. Diploma Thesis No. 3546, University of Stuttgart, Germany

  18. Haupt F, Fischer M, Karastoyanova D, Leymann F, Vukojevic-Haupt K (2014) Service composition for REST. In: EDOC’14. IEEE Press, New York

  19. Held M, Küchlin W, Blochinger W (2011) Mobiflow: principles and design of a workflow system for molecular biology. IJSSMET 2(4):67–78

    Google Scholar 

  20. Hey T, Tansley S, Tolle K (eds) (2009) The fourth paradigm: data-intensive scientific discovery. Microsoft Research, New York

    Google Scholar 

  21. Koop D, Santos E, Bauer B, Troyer M, Freire J, Silva CT (2010) Bridging workflow and data provenance using strong links. In: SSDBM’10. Springer, Berlin, pp 397–415

  22. Krause R, Markert B, Ehlers W (2010) A porous media model for the description of adaptive bone remodelling. PAMM 10(1):79–80

    Article  Google Scholar 

  23. Leymann F, Roller D (1999) Production workflows. Prentice Hall, NJ

    MATH  Google Scholar 

  24. Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee EA, Tao J, Zhao Y (2006) Scientific workflow management and the Kepler system: research articles. Concurr Comput Pract Exp 18(10):1039–1065

    Article  Google Scholar 

  25. Missier P, Soiland-Reyes S, Owen S, Tan W, Nenadic A, Dunlop I, Williams A, Oinn T, Goble C (2010) Taverna, reloaded. In: SSDBM’10. Springer, Berlin, pp 471–481

  26. Molnar D, Binkele P, Hocker S, Schmauder S (2012) Atomistic multiscale simulations on the anisotropic tensile behaviour of copper-alloyed \(\alpha \)-iron at different states of thermal ageing. Philos Mag 92(5):586–607

    Article  Google Scholar 

  27. Molnar D, Binkele P, Mora A, Mukherjee R, Nestler B, Schmauder S (2014) Molecular dynamics virtual testing of thermally aged Fe–Cu microstructures obtained from multiscale simulations. Comput Mater Sci 81:466–470

    Article  Google Scholar 

  28. Molnar D, Mukherjee R, Choudhury A, Mora A, Binkele P, Selzer M, Nestler B, Schmauder S (2012) Multiscale simulations on the coarsening of Cu-rich precipitates in a-Fe using kinetic Monte Carlo, molecular dynamics and phase-field simulations. Acta Materialia 60(20):6961–6971

    Article  Google Scholar 

  29. OASIS (2007) Web services business process execution language version 2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

  30. Plankensteiner K, Prodan R, Janetschek M, Fahringer T, Montagnat J, Rogers D, Harvey I, Taylor I, Balask A, Kacsuk P (2013) Fine-grain interoperability of scientific workflows in distributed computing infrastructures. Grid Comput 11(3):429–455

    Article  Google Scholar 

  31. Reimann P (2007) Generating BPEL processes from a BPEL4Chor description. Student Thesis No. 2100, University of Stuttgart

  32. Reimann P, Reiter M, Schwarz H, Karastoyanova D, Leymann F (2011) SIMPL: a framework for accessing external data in simulation workflows. In: BTW’11, pp 534–553

  33. Rogers D, Harvey I, Huu TT, Evans K, Glatard T, Kallel I, Taylor I, Montagnat J, Jones A, Harrison A (2013) Bundle and pool architecture for multi-language, robust, scalable workflow executions. J Grid Comput 11(3):457–480

    Article  Google Scholar 

  34. Scherp G, Hasselbring W (2010) Towards a model-driven transformation framework for scientific workflows. Proc Comput Sci 1(1):1519–1526

    Article  Google Scholar 

  35. Schumm D, Karastoyanova D, Leymann F, Strauch S (2010) Fragmento: advanced process fragment library. In: ISD’10. Springer, Berlin

  36. Sonntag M, Hahn M, Karastoyanova D (2012) Mayflower: explorative modeling of scientific workflows with BPEL. In: CEUR Workshop’12. Springer, Berlin, pp 1–5

  37. Sonntag M, Hotta S, Karastoyanova D, Molnar D, Schmauder S (2011) Using services and service compositions to enable the distributed execution of legacy simulation applications. In: ServiceWave’11. Springer, Berlin, pp 1–12

  38. Sonntag M, Karastoyanova D (2013) Model-as-you-go: an approach for an advanced infrastructure for scientific workflows. J Grid Comput 11(3):553–583

    Article  Google Scholar 

  39. Sonntag M, Karastoyanova D, Leymann F (2010a) The missing features of workflow systems for scientific computations. In: GWW’10. GI, pp 209–216

  40. Sonntag M, Karastoyanova D (2010b) Next generation interactive scientific experimenting based on the workflow technology. In: MS’10. ACTA Press, NY

  41. Stadler J, Mikulla R, Trebin HR (1997) IMD: a software package for molecular dynamics studies on parallel computers. Int J Modern Phys C 8(5):1131–1140

    Article  Google Scholar 

  42. Strauch S, Andrikopoulos V, Leymann F, Muhler D (2012) \(\text{ ESB }^{\rm MT}\): enabling multi-tenancy in enterprise service buses. In: CloudCom’12. IEEE Press, New York, pp 456–463

  43. Taylor I, Shields M, Wang I, Harrison A (2007) The Triana workflow environment: architecture and applications. In: Taylor I, Deelman E, Gannon D, Shields M (eds) Workflows for e-science. Springer, Berlin, pp 320–339

    Chapter  Google Scholar 

  44. Vukojevic-Haupt K, Karastoyanova D, Leymann F (2013) On-demand provisioning of infrastructure, middleware and services for simulation workflows. In: SOCA’13, pp 1–8

  45. Weerawarana S, Curbera F, Leymann F, Storey T, Ferguson DF (2005) Web Services platform architecture. Prentice Hall, NJ

    Google Scholar 

  46. Weiß A, Andrikopoulos V, Gómez Sáez S, Karastoyanova D, Vukojevic-Haupt K (2013) Modeling choreographies using the BPEL4Chor designer: an evaluation based on case studies. Technical Report 2013/03, University of Stuttgart, Germany

  47. Weiß A, Karastoyanova D, Molnar D, Schmauder S (2014) Coupling of existing simulations using bottom-up modeling of choreographies. In: Workshop on simulation technology: systems for data intensive simulations (SimTech@GI) in conjunction with INFORMATIK 2014. Gesellschaft für Informatik e.V. (GI), pp 101–112

  48. Wieland M, Görlach K, Schumm D, Leymann F (2009) Towards reference passing in web service and workflow-based applications. In: EDOC’09. IEEE Press, New York, pp 109–118

  49. Zaha J, Dumas M, ter Hofstede A, Barros A, Decker G (2008) Bridging global and local models of service-oriented systems. IEEE Trans Syst Man Cybern Part C Appl Rev 38(3):302–318

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Weiß.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiß, A., Karastoyanova, D. Enabling coupled multi-scale, multi-field experiments through choreographies of data-driven scientific simulations. Computing 98, 439–467 (2016). https://doi.org/10.1007/s00607-014-0432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-014-0432-7

Keywords

Mathematics Subject Classification

Navigation