Skip to main content

Advertisement

Log in

An intelligent multi-agent system to create and classify fractal music

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Even though it is known that music enacts emotional responses, computational systems aimed at creating music do not fully integrate them to generate or classify new musical pieces. This lack of integration represents an opportunity to discover patterns for the creation of new pieces and to predict which emotion is enacted by computer-created music. In this context we present an intelligent multi-agent system whose purpose is to create and classify fractal music according to the sixteen emotional categories in the Circumplex Model of Affect developed by Russell. The method of music creation relies on information fusion and the calculation of two validity indices to discover knowledge from the best clusters. Complementary to the creation of musical pieces, an ensemble of classifiers predicts the emotional response provoked by newly created pieces. Both modules rely on a psychoacoustics dataset to discover and classify new input values. Confirmatory results indicate that from one-hundred and forty-four musical pieces, altogether created to induce sixteen emotions, the classification module predicts the proper emotion in seventy-three percent of the cases. Accurately predicted cases are incorporated into the original dataset as new observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Peretz L, Zatorre R (2005) Brain organization for music processing. Annu Rev Psychol 56:89–114

    Article  Google Scholar 

  2. Banerjee A, Sanyal S, Patranabis A, Banerjee K, Guhathakurta T, Sengupta R, Ghosh D, Ghose P (2016) Study on brain dynamics be non linear analysis of music induced eeg signals. Physica A 444:110–120

    Article  Google Scholar 

  3. Juncke L (2008) Music, memory and emotion. J Biol 7(6):1–5

    Google Scholar 

  4. Krueger JW (2011) Doing things with music. Phenomenol Cogn Sci 10(1):1–22

    Article  MathSciNet  Google Scholar 

  5. Smith EE, Kosslyn SM (2007) Cognitive psychology: mind and brain, 1st edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  6. Russell JA (1980) A circumflex model of affect. J Pers Soc Psychol 39:1161–1178

    Article  Google Scholar 

  7. Russell JA, Barret LF (1999) Core affect, prototypical emotional episodes and other things called emotion: dissecting the elephant. J Pers Soc Psychol 76:805–819

    Article  Google Scholar 

  8. Terhardt E (1978) Psychoacoustic evaluation of musical sounds. Percept Psychophys 23:483–492

    Article  Google Scholar 

  9. García A, Calvo H, Gelbukh A (2010) Music composition based on linguistic approach. Lect Notes Artif Intell 6437:117–128

    Google Scholar 

  10. García-Salas H-A, Gelbukh A, Calvo H, Galindo-Soria F (2011) Automatic music composition with simple probabilistic generative grammars. POLIBITS 44:59–65

    Article  Google Scholar 

  11. Sukumaran S, Dheepa G (2003) Generation of fractal music with Mandelbrot set. Glob J Comput Sci Technol 1(1):127–130

    Google Scholar 

  12. Bilotta E, Pantano P, Cupellini E, Rizzuti C (2007) Evolutionary methods for melodic sequences generation from non-linear dynamic systems. Lect Notes Comput Sci 4448:585–592

    Article  Google Scholar 

  13. Miranda ER (2007) Cellular automata music: from sound synthesis to musical forms. Volume 1 of Miranda and Biles [14], pp 170–193

  14. Miranda ER, Al Biles J (2007) Evolutionary computer music, vol 1. Springer, London

    Book  Google Scholar 

  15. Zhang Q, Miranda ER (2007) Experiments in generative musical performance with a genetic algorithm. Volume 1 of Miranda and Biles [14], pp 100–116

  16. Al Biles J (2007) Evolutionary computation for musical tasks. Volume 1 of Miranda and Biles [14], pp 28–51

  17. Blackwell T (2007) Swarming and music. Volume 1 of Miranda and Biles [14], pp 194–217

  18. Blackwell T (2008) Swarm granulation. Volume 1 of Romero and Machado [19], pp 103–122

  19. Romero J, Machado P (2008) The art of artificial evolution. A handbook on evolutionary art and music, vol 1. Springer, London

    Book  Google Scholar 

  20. Bryden KA et al (2002) Transforming data into music through fractal algorithms. Intell Eng Syst Through Artif Neural Netw 12:65–670

    Google Scholar 

  21. Roig C, Tardón LJ, Barbancho I, Barbancho AM (2014) Automatic melody composition based on a probabilistic model of music style and harmonic rules. Knowl Based Syst 71:419–434

    Article  Google Scholar 

  22. López-Ortega O, Ioana López-Popa S (2012) Fractals, fuzzy logic and expert systems to assist in the construction of musical pieces. Expert Syst Appl 39:11911–11923

    Article  Google Scholar 

  23. López-Ortega O (2013) Computer-assisted creativity: emulation of cognitive processes on a multi-agent system. Expert Syst Appl 40(9):3459–3470

    Article  Google Scholar 

  24. Bellifemini FL, Caire G, Greenwood D (2007) Developing multi-agent systems with JADE. Wiley, Hoboken

    Book  Google Scholar 

  25. Lorenz EN (1963) Deterministic non-periodic flow. Atmos Sci 20:130–141

    Article  Google Scholar 

  26. Poria S, Gelbukh A, Hussain A, Bandyopadhyay S, Howard N (2013) Music genre classification: a semi-supervised approach. Lect Notes Comput Sci 7914:254–263

    Article  Google Scholar 

  27. Webster GD, Weir CG (2005) Emotional responses to music: interactive effects of mode, texture and tempo. Motiv Emot 29(1):19–39

    Article  Google Scholar 

  28. López-Ortega O, Franco-Árcega A (2015) Analysis of psychoacoustic responses to digital music for enhancing autonomous creative systems. Appl Acoust 89:320–332

    Article  Google Scholar 

  29. Oliveira AP, Cardoso A (2010) A musical system for emotional expression. Knowl Based Syst 23:901–913

    Article  Google Scholar 

  30. Lie L, Liu D, Zhang H-J (2006) Automatic mood detection and tracking of music audio signals. IEEE Trans Audio Speech Lang Process 14(1):5–18

    Article  Google Scholar 

  31. Janssen JH, van der Broek EL, Westerink JHDM (2012) Tune in to your emotions: a robust personalized affective music player. User Model User Adap Inter 22:255–279

    Article  Google Scholar 

  32. Li H-F (2011) MEMSA: mining emerging melody structures from music query data. Multimed Syst 17:237–245

    Article  Google Scholar 

  33. Laurier C, Meyers O, Serr J, Blech M, Herrera P, Serra X (2010) Indexing music by mood: design and integration of an automatic content-based annotator. Multimed Tools Appl 48(1):161–184

    Article  Google Scholar 

  34. Shan M-K, Chiu S-C (2010) Algorithmic compositions based on discovered musical patterns. Multimed Tools Appl 46:1–23

    Article  Google Scholar 

  35. den Brinker B, van Dinther R, Skowronek J (2012) Expressed music mood classification compared with valence and arousal ratings. EURASIP J Audio Speech Music Process 24:1–14

    Google Scholar 

  36. Unehara M, Onisawa T (2003) Music composition system with human evaluation as human centered system. Soft Comput 7(3):167–178

    Article  Google Scholar 

  37. Yang Y-H, Lin Y-C, Cheng H-T, Liao I-B, Ho Y-C, Chen H-H (2008) Toward multimodal music emotion classification. In: Huang Y-MR, Xu C, Cheng K-S, Yang J-FK, Swamy MNS, Li S, Ding J-W (eds) Lecture notes in computer science, vol 5353. Springer, Berlin, pp 70–79

    Chapter  Google Scholar 

  38. Holmes G, Donkin A, Witten IH (1994) Weka: a machine learning workbench. In: Proceedings of the second Australia and New Zealand conference on intelligent information systems, Brisbane, Australia

  39. Saunders R (2012) Towards autonomous creative systems. A computational approach. Cogn Comput 4:216–225

    Article  Google Scholar 

  40. Wooldridge M (2009) An introduction to multiagent systems, 2nd edn. Wiley, Hoboken

    Google Scholar 

  41. Weiss G (1999) Multiagent systems: a modern approach to distributed artificial intelligence, 1st edn. The MIT Press, Cambridge

    Google Scholar 

  42. Mimaroglu S, Erdil E (2011) Combining multiple clustering using similarity graph. Pattern Recogn 44:694–703

    Article  Google Scholar 

  43. Mimaroglu S, Erdil E (2013) An efficient and scalable family of algorithms for combining clusterings. Eng Appl Artif Intell 26:2525–2539

    Article  Google Scholar 

  44. Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indexes. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654

    Article  Google Scholar 

  45. Arbelaitz O, Gurrutxaga I, Muguerza J, Pérez JM, Perona I (2013) An extensive comparative study of cluster validity indices. Pattern Recogn 46:243–256

    Article  Google Scholar 

  46. Kashef R, Kamel MS (2010) Cooperative clustering. Pattern Recogn 43:2315–2329

    Article  Google Scholar 

  47. Hadjitodorov ST, Kuncheva LI, Todorova LP (2006) Moderate diversity for better cluster ensembles. Inf Fusion 7:264–275

    Article  Google Scholar 

  48. Nakamura EF, Loureiro AF, Frery AC (2007) Information fusion for wireless sensor networks: methods, models and classifications. ACM Comput Surv 39(3):9/1–9/45

    Article  Google Scholar 

  49. Wozniak M, Grana M, Corchado E (2014) A survey of multiple classifier systems as hybrid systems. Inf Fusion 16:3–17

    Article  Google Scholar 

  50. Grabisch M (1998) Fuzzy integral as flexible and interpretable tool of aggregation. In: Bouchon-Meunier B (ed) Aggregation and fusion of imperfect information, volume 12 of studies in fuzziness and soft computing. Springer, Berlin, pp 51–72

    Chapter  Google Scholar 

  51. Zhiwen Y, Li L, Wong H-S, You J, Han G, Gao Y, Guoxian Y (2014) Probabilistic cluster structure ensemble. Inf Sci 267:16–34

    Article  MathSciNet  Google Scholar 

  52. Calderón J, López-Ortega O, Castro-Espinoza F (2015) A multi-agent ensemble of classifiers. Lect Notes Comput Sci 9413:499–508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar López-Ortega.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (arff 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Ortega, O., Castro-Espinoza, F. & Pérez-Cortés, O. An intelligent multi-agent system to create and classify fractal music. Computing 100, 671–688 (2018). https://doi.org/10.1007/s00607-017-0584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-017-0584-3

Keywords

Mathematics Subject Classification

Navigation