Skip to main content
Log in

Federated learning for digital healthcare: concepts, applications, frameworks, and challenges

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

Various hospitals have adopted digital technologies in the healthcare sector for various healthcare-related applications. Due to the effect of the Covid-19 pandemic, digital transformation has taken place in many domains, especially in the healthcare domain; it has streamlined various healthcare activities. With the advancement in technology concept of telemedicine evolved over the years and led to personalized healthcare and drug discovery. The use of machine learning (ML) technique in healthcare enables healthcare professionals to make a more accurate and early diagnosis. Training these ML models requires a massive amount of data, including patients’ personal data, that need to be protected from unethical use. Sharing these data to train ML models may violate data privacy. A distributed ML paradigm called federated learning (FL) has allowed different medical research institutions, hospitals, and healthcare devices to train ML models without sharing raw data. This survey paper overviews existing research work on FL-related use cases and applications. This paper also discusses the state-of-the-art tools and techniques available for FL research, current shortcomings, and future challenges in using FL in healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vishnu S, Ramson SJ, Jegan R (2020) Internet of medical things (iomt)-an overview. In: 5th international conference on devices, circuits and systems (ICDCS). IEEE, pp 101–104

  2. Islam SR, Kwak D, Kabir MH, Hossain M, Kwak K-S (2015) The internet of things for health care: a comprehensive survey. IEEE Access 3:678–708

    Article  Google Scholar 

  3. Shickel B, Tighe PJ, Bihorac A, Rashidi P (2017) Deep ehr: a survey of recent advances in deep learning techniques for electronic health record (ehr) analysis. IEEE J Biomed Health Inform 22(5):1589–1604

    Article  Google Scholar 

  4. Nguyen DC, Cheng P, Ding M, Lopez-Perez D, Pathirana PN, Li J, Seneviratne A, Li Y, Poor HV (2020) Enabling ai in future wireless networks: a data life cycle perspective. IEEE Commun Surv Tutor 23(1):553–595

    Article  Google Scholar 

  5. Avancha S, Baxi A, Kotz D (2012) Privacy in mobile technology for personal healthcare. ACM Comput Surv (CSUR) 45(1):1–54

    Article  Google Scholar 

  6. Cheng VS, Hung PC (2006) Health insurance portability and accountability act (hippa) compliant access control model for web services. Int J Healthc Inf Syst Inform (IJHISI) 1(1):22–39

    Article  Google Scholar 

  7. Goldberg SG, Johnson GA, Shriver SK (2024) Regulating privacy online: an economic evaluation of the gdpr. Am Econ J Econ Pol 16(1):325–358

    Article  Google Scholar 

  8. Woisetschläger H, Erben A, Marino B, Wang S, Lane ND, Mayer R, Jacobsen H-A (2024) Federated learning priorities under the European union artificial intelligence act. arXiv:2402.05968

  9. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics. PMLR, pp 1273–1282

  10. Ignatov A, Timofte R, Chou W, Wang K, Wu M, Hartley T, Van Gool L (2018) Ai benchmark: running deep neural networks on android smartphones. In: Proceedings of the European conference on computer vision (ECCV) workshops, pp 1–27

  11. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: concept and applications. ACM Trans Intell Syst Technol (TIST) 10(2):1–19

    Article  Google Scholar 

  12. Rieke N, Hancox J, Li W, Milletari F, Roth HR, Albarqouni S, Bakas S, Galtier MN, Landman BA, Maier-Hein K et al (2020) The future of digital health with federated learning. NPJ Digit Med 3(1):1–7

    Article  Google Scholar 

  13. Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F (2021) Federated learning for healthcare informatics. J Healthc Inform Res 5(1):1–19

    Article  Google Scholar 

  14. Nguyen DC, Pham Q-V, Pathirana PN, Ding M, Seneviratne A, Lin Z, Dobre O, Hwang W-J (2022) Federated learning for smart healthcare: a survey. ACM Comput Surv (CSUR) 55(3):1–37

    Article  Google Scholar 

  15. Antunes RS, André da Costa C, Küderle A, Yari IA, Eskofier B (2022) Federated learning for healthcare: systematic review and architecture proposal. ACM Trans Intell Syst Technol (TIST) 13(4):1–23

    Article  Google Scholar 

  16. Hard A, Rao K, Mathews R, Beaufays F, Augenstein S, Eichner H, Kiddon C, Ramage D (2018) Federated learning for mobile keyboard prediction. ArXiv abs/1811.03604, pp 1–7

  17. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles Z, Cormode G, Cummings R, et al. (2021) Advances and open problems in federated learning. Found Trends® Mach Learn 14(1–2):1–210

  18. Kaissis G, Ziller A, Passerat-Palmbach J, Ryffel T, Usynin D, Trask A, Lima I, Mancuso J, Jungmann F, Steinborn M-M et al (2021) End-to-end privacy-preserving deep learning on multi-institutional medical imaging. Nat Mach Intell 3(6):473–484

    Article  Google Scholar 

  19. Zhou AC, Xiao Y, Gong Y, He B, Zhai J, Mao R (2019) Privacy regulation aware process mapping in geo-distributed cloud data centers. IEEE Trans Parallel Distrib Syst 30(8):1872–1888

    Article  Google Scholar 

  20. Lo SK, Lu Q, Zhu L, Paik H-Y, Xu X, Wang C (2022) Architectural patterns for the design of federated learning systems. J. Syst. Softw. 191(C):1–18

    Google Scholar 

  21. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: concept and applications. ACM Trans Intell Syst Technol (TIST) 10(2):1–19

    Article  Google Scholar 

  22. Zeng K, Li C, Hou L, Li J, Feng L (2021) A comprehensive survey of entity alignment for knowledge graphs. AI Open 2:1–13

    Article  Google Scholar 

  23. Liu H, Zhang X, Shen X, Sun H (2021) A federated learning framework for smart grids: securing power traces in collaborative learning. arXiv abs/2103.11870, pp 1–9

  24. Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big data 3(1):1–40

    Article  Google Scholar 

  25. Jim’enez-S’anchez A, Tardy M, Ballester MÁG, Mateus D, Piella G (2021) Memory-aware curriculum federated learning for breast cancer classification. ArXiv abs/2107.02504, pp 1–7

  26. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, Kiddon C, Konečnỳ J, Mazzocchi S, McMahan B et al (2019) Towards federated learning at scale: system design. Proc Mach Learn Syst 1:374–388

    Google Scholar 

  27. Lin S, Wang C, Li H, Deng J, Wang Y, Ding C (2020) Esmfl: efficient and secure models for federated learning. ArXiv abs/2009.01867, pp 1–7

  28. Marfoq O, Xu C, Neglia G, Vidal R (2020) Throughput-optimal topology design for cross-silo federated learning. Adv Neural Inf Process Syst 33:19478–19487

    Google Scholar 

  29. Wang R, Li H, Liu E (2021) Blockchain-based federated learning in mobile edge networks with application in internet of vehicles. ArXiv abs/2103.01116, pp 1–15

  30. Li Q, Wen Z, He B (2020) Practical federated gradient boosting decision trees. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 4642–4649

  31. Zheng Z, Xie S, Dai H-N, Chen X, Wang H (2018) Blockchain challenges and opportunities: a survey. Int J Web Grid Serv 14(4):352–375

    Article  Google Scholar 

  32. Ryffel T, Trask A, Dahl M, Wagner B, Mancuso JV, Rueckert D, Passerat-Palmbach J (2018) A generic framework for privacy-preserving deep learning. ArXiv abs/1811.04017, pp 1–5

  33. Xing H, Simeone O, Bi S (2020) Decentralized federated learning via sgd over wireless d2d networks. In: 2020 IEEE 21st international workshop on signal processing advances in wireless communications (SPAWC). IEEE, pp 1–5

  34. Hsu T-MH, Qi Brown M (2019) Measuring the effects of non-identical data distribution for federated visual classification. ArXiv abs/1909.06335, pp 1–5

  35. Stich SU (2019) Local sgd converges fast and communicates little. ArXiv abs/1805.09767, pp 1–12

  36. Karimireddy SP, Kale S, Mohri M, Reddi S, Stich S, Suresh AT (2020) Scaffold: stochastic controlled averaging for federated learning. In: International conference on machine learning. PMLR, pp 5132–5143

  37. Sahu AK, Li T, Sanjabi M, Zaheer M, Talwalkar AS, Smith, V (2018) On the convergence of federated optimization in heterogeneous networks. ArXiv abs/1812.06127, pp 1–11

  38. Reddi SJ, Charles ZB, Zaheer M, Garrett Z, Rush K, Konecný J, Kumar S, McMahan HB (2021) Adaptive federated optimization. ArXiv abs/2003.00295, pp 1–38

  39. Wang H, Yurochkin M, Sun Y, Papailiopoulos D, Khazaeni Y (2020) Federated learning with matched averaging. ArXiv abs/2002.06440, pp 1–16

  40. Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298

    Article  Google Scholar 

  41. Staudemeyer RC, Morris ER (2019) Understanding lstm—a tutorial into long short-term memory recurrent neural networks. ArXiv abs/1909.09586, pp 1–42

  42. He C, Annavaram M, Avestimehr AS (2020) Fednas: federated deep learning via neural architecture search. ArXiv abs/2004.08546, pp 1–6

  43. Li D, Wang J (2019) Fedmd: heterogenous federated learning via model distillation. ArXiv abs/1910.03581, pp 1–8

  44. Segev H, Chechik G (2023) Personalized federated learning for medical segmentation using hypernetworks

  45. Ma X, Xu D (2023) Torr: a lightweight blockchain for decentralized federated learning. IEEE Internet Things J 11:1028–1040

    Article  Google Scholar 

  46. Sachin D, Annappa B, Ambesenge S (2022) Federated learning for wearable sensor-based human activity recognition. In: International conference on intelligent technologies. Springer, pp 131–139

  47. Yao D, Pan W, Dai Y, Wan Y, Ding X, Yu C, Jin H, Xu Z, Sun L (2024) Toward heterogeneous federated learning via global knowledge distillation. IEEE Trans Comput 73:3–17. https://doi.org/10.1109/TC.2023.3315066

    Article  Google Scholar 

  48. Wang Z, Xu H, Liu J, Xu Y, Huang H, Zhao Y (2023) Accelerating federated learning with cluster construction and hierarchical aggregation. IEEE Trans Mob Comput 22:3805–3822. https://doi.org/10.1109/TMC.2022.3147792

    Article  Google Scholar 

  49. Lo SK, Liu Y, Lu Q, Wang C, Xu X, Paik H-Y, Zhu L (2023) Toward trustworthy ai: blockchain-based architecture design for accountability and fairness of federated learning systems. IEEE Internet Things J 10:3276–3284. https://doi.org/10.1109/JIOT.2022.3144450

    Article  Google Scholar 

  50. Qi D, Zhao H, Li S (2023) Better generative replay for continual federated learning. arXiv:abs/2302.13001. https://doi.org/10.48550/arXiv.2302.13001

  51. Liang S, Tian J, Yang S, Zhang Y (2023) Personalized federated learning with local attention. arXiv:abs/2304.01783. https://doi.org/10.48550/arXiv.2304.01783

  52. Malinovsky G, Horv’ath S, Burlachenko K, Richt’arik P (2023) Federated learning with regularized client participation. arXiv:abs/2302.03662. https://doi.org/10.48550/arXiv.2302.03662

  53. Cremonesi F, Vesin M, Cansiz S, Bouillard Y, Balelli I, Innocenti L, Silva S, Ayed S, Taiello R, Kameni L, Vidal R, Orlhac F, Nioche C, Lapel N, Houis B, Modzelewski R, Humbert O, Onen M, Lorenzi M (2023) Fed-biomed: open, transparent and trusted federated learning for real-world healthcare applications. arXiv:abs/2304.12012. https://doi.org/10.48550/arXiv.2304.12012

  54. Gong M, Zhang Y, Gao Y, Qin AK, Wu Y, Wang S, Zhang Y (2024) A multi-modal vertical federated learning framework based on homomorphic encryption. IEEE Trans Inf Forensics Secur 19:1826–1839. https://doi.org/10.1109/TIFS.2023.3340994

    Article  Google Scholar 

  55. Friedman CP, Wong AK, Blumenthal D (2010) Achieving a nationwide learning health system. Sci Transl Med 2(57):57–295729

    Article  Google Scholar 

  56. Ibeh I, Enitan S, Akele R, Isitua C (2020) A review of the covid-19 pandemic and the role of medical laboratory scientists in containment. J Med Lab Sci 30(1):68–89

    Google Scholar 

  57. Voigt P, Von dem Bussche A (2017) The eu general data protection regulation (gdpr). A Practical Guide 1st Ed., Cham: Springer International Publishing 10(3152676):10–5555

  58. Xu B, Xia W, Zhang J, Quek TQ, Zhu H (2021) Online client scheduling for fast federated learning. IEEE Wirel Commun Lett 10(7):1434–1438

    Article  Google Scholar 

  59. Xia W, Quek TQ, Guo K, Wen W, Yang HH, Zhu H (2020) Multi-armed bandit-based client scheduling for federated learning. IEEE Trans Wirel Commun 19(11):7108–7123

    Article  Google Scholar 

  60. Luo S, Chen X, Wu Q, Zhou Z, Yu S (2020) Hfel: joint edge association and resource allocation for cost-efficient hierarchical federated edge learning. IEEE Trans Wirel Commun 19(10):6535–6548

    Article  Google Scholar 

  61. Shi W, Zhou S, Niu Z, Jiang M, Geng L (2020) Joint device scheduling and resource allocation for latency constrained wireless federated learning. IEEE Trans Wirel Commun 20(1):453–467

    Article  Google Scholar 

  62. Yang HH, Liu Z, Quek TQ, Poor HV (2019) Scheduling policies for federated learning in wireless networks. IEEE Trans Commun 68(1):317–333

    Article  Google Scholar 

  63. Nguyen MNH, Tran NH, Tun YK, Han Z, Hong CS (2021) Toward multiple federated learning services resource sharing in mobile edge networks. ArXiv abs/2011.12469, pp 1–14

  64. Xu J, Wang H, Chen L (2021) Bandwidth allocation for multiple federated learning services in wireless edge networks. IEEE Trans Wirel Commun 21(4):2534–2546

    Article  Google Scholar 

  65. Mothukuri V, Parizi RM, Pouriyeh S, Huang Y, Dehghantanha A, Srivastava G (2021) A survey on security and privacy of federated learning. Futur Gener Comput Syst 115:619–640

    Article  Google Scholar 

  66. Zhao B, Mopuri KR, Bilen H (2020) idlg: improved deep leakage from gradients. ArXiv abs/2001.02610, pp 1–5

  67. Nasr M, Shokri R, Houmansadr A (2018) Machine learning with membership privacy using adversarial regularization. In: Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, pp 634–646

  68. Lee J, Sun J, Wang F, Wang S, Jun C-H, Jiang X et al (2018) Privacy-preserving patient similarity learning in a federated environment: development and analysis. JMIR Med Inform 6(2):1–8

    Article  Google Scholar 

  69. Dwork C (2008) Differential privacy: a survey of results. In: International conference on theory and applications of models of computation. Springer, pp 1–19

  70. Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S (2018) Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: International MICCAI Brainlesion workshop. Springer, pp 92–104

  71. Wu M, Ye D, Ding J, Guo Y, Yu R, Pan M (2021) Incentivizing differentially private federated learning: a multidimensional contract approach. IEEE Internet Things J 8(13):10639–10651

    Article  Google Scholar 

  72. Malekzadeh M, Hasircioglu B, Mital N, Katarya K, Ozfatura ME, Gunduz D (2021) Dopamine: differentially private federated learning on medical data. ArXiv abs/2101.11693, pp 1–9

  73. Choudhury O, Gkoulalas-Divanis A, Salonidis T, Sylla I, Park Y, Hsu G, Das AK (2019) Differential privacy-enabled federated learning for sensitive health data. ArXiv abs/1910.02578, pp 1–6

  74. Kerkouche R, Acs G, Castelluccia C, Genevès P (2021) Privacy-preserving and bandwidth-efficient federated learning: an application to in-hospital mortality prediction. In: Proceedings of the conference on health, inference, and learning, pp 25–35

  75. Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018) Federated learning with non-iid data. ArXiv abs/1806.00582, pp 1–12

  76. Jeong E, Oh S, Kim H, Park J, Bennis M, Kim S-L (2018) Communication-efficient on-device machine learning: federated distillation and augmentation under non-iid private data. ArXiv abs/1811.11479, pp 1–6

  77. Makhzani A, Shlens J, Jaitly N, Goodfellow IJ (2015) Adversarial autoencoders. abs/1511.05644, pp 1–16

  78. Duan M, Liu D, Chen X, Tan Y, Ren J, Qiao L, Liang L (2019) Astraea: self-balancing federated learning for improving classification accuracy of mobile deep learning applications. In: 2019 IEEE 37th international conference on computer design (ICCD). IEEE, pp 246–254

  79. Marfoq O, Neglia G, Bellet A, Kameni L, Vidal R (2021) Federated multi-task learning under a mixture of distributions. Adv Neural Inf Process Syst 34:15434–15447

    Google Scholar 

  80. Arivazhagan MG, Aggarwal V, Singh A, Choudhary S (2019) Federated learning with personalization layers. ArXiv abs/1912.00818, pp 1–13

  81. Fallah A, Mokhtari A, Ozdaglar A (2020) Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. Adv Neural Inf Process Syst 33:3557–3568

    Google Scholar 

  82. Wu Q, Chen X, Zhou Z, Zhang J (2020) Fedhome: cloud-edge based personalized federated learning for in-home health monitoring. IEEE Trans Mobile Comput 21:2818–2832

    Article  Google Scholar 

  83. Yu T, Bagdasaryan E, Shmatikov V (2020) Salvaging federated learning by local adaptation. abs/2002.04758, pp 1–11

  84. Rudovic O, Tobis N, Kaltwang S, Schuller BW, Rueckert D, Cohn JF, Picard RW (2021) Personalized federated deep learning for pain estimation from face images. ArXiv abs/2101.04800, pp 1–12

  85. Can YS, Ersoy C (2021) Privacy-preserving federated deep learning for wearable iot-based biomedical monitoring. ACM Trans Internet Technol (TOIT) 21(1):1–17

    Article  Google Scholar 

  86. Chhikara P, Singh P, Tekchandani R, Kumar N, Guizani M (2020) Federated learning meets human emotions: a decentralized framework for human-computer interaction for iot applications. IEEE Internet Things J 8(8):6949–6962

    Article  Google Scholar 

  87. Tsouvalas V, Ozcelebi T, Meratnia N (2022) Privacy-preserving speech emotion recognition through semi-supervised federated learning. In: 2022 IEEE international conference on pervasive computing and communications workshops and other affiliated events (PerCom workshops). IEEE, pp 359–364

  88. Liu D, Miller T, Sayeed R, Mandl KD (2018) Fadl: federated-autonomous deep learning for distributed electronic health record. ArXiv abs/1811.11400, pp 1–5

  89. Hao M, Li H, Xu G, Liu Z, Chen Z (2020) Privacy-aware and resource-saving collaborative learning for healthcare in cloud computing. In: IEEE international conference on communications (ICC). IEEE, pp 1–6

  90. Chen Y, Qin X, Wang J, Yu C, Gao W (2020) Fedhealth: a federated transfer learning framework for wearable healthcare. IEEE Intell Syst 35(4):83–93

    Article  Google Scholar 

  91. Sachin D, Annappa B, Ambesenge S (2023) Fedrh: federated learning based remote healthcare. In: 2023 IEEE international conference on blockchain and distributed systems security (ICBDS). IEEE, pp 1–7

  92. Xu X, Peng H, Sun L, Niu Y, Ma H, Liu L, He L (2021) Federated depression detection from multi-sourcemobile health data. ArXiv abs/2102.09342, pp. 1–9

  93. Li J, Meng Y, Ma L, Du S, Zhu H, Pei Q, Shen X (2021) A federated learning based privacy-preserving smart healthcare system. IEEE Trans Industr Inf 18(3):2021–2031

    Article  Google Scholar 

  94. Abdul Salam M, Taha S, Ramadan M (2021) Covid-19 detection using federated machine learning. PLoS ONE 16(6):1–25

    Article  Google Scholar 

  95. Huang L, Yin Y, Fu Z, Zhang S, Deng H, Liu D (2020) Loadaboost: loss-based adaboost federated machine learning with reduced computational complexity on iid and non-iid intensive care data. PLoS ONE 15(4):1–16

    Article  Google Scholar 

  96. Yan Z, Wicaksana J, Wang Z, Yang X, Cheng K-T (2020) Variation-aware federated learning with multi-source decentralized medical image data. IEEE J Biomed Health Inform 25(7):2615–2628

    Article  Google Scholar 

  97. Gudur GK, Perepu SK (2020) Federated learning with heterogeneous labels and models for mobile activity monitoring. ArXiv abs/2012.02539, pp 1–8

  98. Li C, Niu D, Jiang B, Zuo X, Yang J (2021) Meta-har: federated representation learning for human activity recognition. In: Proceedings of the web conference, pp 912–922

  99. Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W (2018) Federated learning of predictive models from federated electronic health records. Int J Med Inform 112:59–67

    Article  Google Scholar 

  100. Choudhury O, Gkoulalas-Divanis A, Salonidis T, Sylla I, Park Y, Hsu G, Das AK (2019) Differential privacy-enabled federated learning for sensitive health data. ArXiv abs/1910.02578, pp 1–6

  101. Wei K, Li J, Ding M, Ma C, Yang HH, Farokhi F, Jin S, Quek TQ, Poor HV (2020) Federated learning with differential privacy: algorithms and performance analysis. IEEE Trans Inf Forensics Secur 15:3454–3469

    Article  Google Scholar 

  102. Vepakomma P, Gupta O, Swedish T, Raskar R (2018) Split learning for health: distributed deep learning without sharing raw patient data. ArXiv abs/1812.00564, pp 1–7

  103. Papadopoulos P, Abramson W, Hall AJ, Pitropakis N, Buchanan WJ (2021) Privacy and trust redefined in federated machine learning. Mach Learn Knowl Extract 3(2):333–356

    Article  Google Scholar 

  104. Pfohl SR, Dai AM, Heller KA (2019) Federated and differentially private learning for electronic health records. ArXiv abs/1911.05861, pp 1–7

  105. Nguyen DC, Pathirana PN, Ding M, Seneviratne A (2020) Blockchain and edge computing for decentralized emrs sharing in federated healthcare. In: GLOBECOM 2020–2020 IEEE global communications conference. IEEE, pp 1–6

  106. Zhang Y, Gu T, Zhang X (2020) Mdldroid: a chainsgd-reduce approach to mobile deep learning for personal mobile sensing. In: 2020 19th ACM/IEEE international conference on information processing in sensor networks (IPSN). IEEE, pp 73–84

  107. Szatmari T-I, Petersen MK, Korzepa MJ, Giannetsos T (2020) Modelling audiological preferences using federated learning. In: Adjunct publication of the 28th ACM conference on user modeling, adaptation and personalization, pp 187–190

  108. Nguyen DC, Pathirana PN, Ding M, Seneviratne A (2021) Bedgehealth: a decentralized architecture for edge-based iomt networks using blockchain. IEEE Internet Things J 8(14):11743–11757

    Article  Google Scholar 

  109. Liu D, Dligach D, Miller T (2019) Two-stage federated phenotyping and patient representation learning. In: Proceedings of the conference. Association for Computational Linguistics. Meeting, vol 2019. NIH Public Access, pp 283–287

  110. Tan X, Chang C-CH, Tang L (2021) A tree-based federated learning approach for personalized treatment effect estimation from heterogeneous data sources. ArXiv abs/2103.06261, pp 1–24

  111. Rajendran S, Obeid JS, Binol H, Foley K, Zhang W, Austin P, Brakefield J, Gurcan MN, Topaloglu U (2021) Cloud-based federated learning implementation across medical centers. JCO Clin Cancer Inform 5:1–11

    Article  Google Scholar 

  112. Mothukuri V, Parizi RM, Pouriyeh S, Huang Y, Dehghantanha A, Srivastava G (2021) A survey on security and privacy of federated learning. Futur Gener Comput Syst 115:619–640

    Article  Google Scholar 

  113. Yan Z, Wicaksana J, Wang Z, Yang X, Cheng K-T (2020) Variation-aware federated learning with multi-source decentralized medical image data. IEEE J Biomed Health Inform 25(7):2615–2628

    Article  Google Scholar 

  114. Li X, Gu Y, Dvornek N, Staib LH, Ventola P, Duncan JS (2020) Multi-site fmri analysis using privacy-preserving federated learning and domain adaptation: abide results. Med Image Anal 65:101765

    Article  Google Scholar 

  115. Xue Z, Zhou P, Xu Z, Wang X, Xie Y, Ding X, Wen S (2021) A resource-constrained and privacy-preserving edge-computing-enabled clinical decision system: a federated reinforcement learning approach. IEEE Internet Things J 8(11):9122–9138

    Article  Google Scholar 

  116. Google: Tensorflow Federated. Accessed 06 Sept 2022. https://www.tensorflow.org/federated

  117. Beutel DJ, Topal T, Mathur A, Qiu X, Parcollet T, Lane ND (2020) Flower: a friendly federated learning research framework. ArXiv abs/2007.14390, pp 1–8

  118. Ziller A, Trask A, Lopardo A, Szymkow B, Wagner B, Bluemke E, Nounahon J-M, Passerat-Palmbach J, Prakash K, Rose N, et al. (2021) Pysyft: a library for easy federated learning. In: Federated learning systems. Springer, pp 111–139

  119. PaddlePaddle: Paddlepaddle/PADDLEFL: federated deep learning in Paddlepaddle. Accessed 06 Sept 2022. https://github.com/PaddlePaddle/PaddleFL

  120. Liu Y, Fan T, Chen T, Xu Q, Yang Q (2021) Fate: an industrial grade platform for collaborative learning with data protection. J Mach Learn Res 22(226):1–6

    MathSciNet  Google Scholar 

  121. Reina GA, Gruzdev A, Foley P, Perepelkina OS, Sharma M, Davidyuk I, Trushkin I, Radionov M, Mokrov A, Agapov D, Martin J, Edwards B, Sheller MJ, Pati S, Moorthy PN, Wang S-H, Shah P, Bakas S (2021) Openfl: an open-source framework for federated learning. ArXiv abs/2105.06413, pp 1–10

  122. Lai F, Dai Y, Zhu X, Madhyastha HV, Chowdhury M (2021) Fedscale: benchmarking model and system performance of federated learning. In: Proceedings of the first workshop on systems challenges in reliable and secure federated learning, pp 1–3

  123. Caldas S, Wu P, Li T, Konecný J, McMahan HB, Smith V, Talwalkar AS (2018) Leaf: a benchmark for federated settings. ArXiv abs/1812.01097, pp 1–9

  124. Rodríguez-Barroso N, Stipcich G, Jiménez-López D, Ruiz-Millán JA, Martínez-Cámara E, González-Seco G, Luzón MV, Veganzones MA, Herrera F (2020) Federated learning and differential privacy: software tools analysis, the sherpa. ai fl framework and methodological guidelines for preserving data privacy. Inf Fusion 64:270–292

  125. Xie Y, Wang Z, Chen D, Gao D, Yao L, Kuang W, Li Y, Ding B, Zhou J (2022) Federatedscope: a flexible federated learning platform for heterogeneity. arXiv abs/2204.05011, pp 1–18

  126. Xu B, Xia W, Zhang J, Quek TQ, Zhu H (2021) Online client scheduling for fast federated learning. IEEE Wirel Commun Lett 10(7):1434–1438

    Article  Google Scholar 

  127. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A, Seth K (2016) Practical secure aggregation for federated learning on user-held data. ArXiv abs/1611.04482, pp 1–5

  128. Muhammad K, Wang Q, O’Reilly-Morgan D, Tragos E, Smyth B, Hurley N, Geraci J, Lawlor A (2020) Fedfast: going beyond average for faster training of federated recommender systems. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1234–1242

  129. Shahidinejad A, Ghobaei-Arani M, Masdari M (2021) Resource provisioning using workload clustering in cloud computing environment: a hybrid approach. Clust Comput 24(1):319–342

    Article  Google Scholar 

  130. Khorsand R, Ghobaei-Arani M, Ramezanpour M (2019) A self-learning fuzzy approach for proactive resource provisioning in cloud environment. Softw Pract Exp 49(11):1618–1642

    Article  Google Scholar 

  131. Hegedűs I, Danner G, Jelasity M (2019) Decentralized recommendation based on matrix factorization: a comparison of gossip and federated learning. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 317–332

  132. Yang Q, Fan L, Tong R, Lv A (2021) IEEE federated machine learning. In: IEEE federated machine learning - white paper, pp 1–18

  133. Malekzadeh M, Hasircioglu B, Mital N, Katarya K, Ozfatura ME, Gunduz D (2021) Dopamine: differentially private federated learning on medical data. ArXiv abs/2101.11693, pp 1–7

  134. Zhang C, Xia J, Yang B, Puyang H, Wang W, Chen R, Akkus IE, Aditya P, Yan F (2021) Citadel: protecting data privacy and model confidentiality for collaborative learning. In: Proceedings of the ACM symposium on cloud computing, pp 546–561

  135. Sarikaya Y, Ercetin O (2019) Motivating workers in federated learning: a stackelberg game perspective. IEEE Network Lett 2(1):23–27

    Article  Google Scholar 

  136. Zhao J, Zhu X, Wang J, Xiao J (2021) Efficient client contribution evaluation for horizontal federated learning. In: ICASSP 2021–2021 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 3060–3064

  137. Hu R, Guo Y, Li H, Pei Q, Gong Y (2020) Personalized federated learning with differential privacy. IEEE Internet Things J 7(10):9530–9539

    Article  Google Scholar 

  138. Fereidooni H, Marchal S, Miettinen M, Mirhoseini A, Möllering H, Nguyen TD, Rieger P, Sadeghi A-R, Schneider T, Yalame H, et al. (2021) Safelearn: secure aggregation for private federated learning. In: 2021 IEEE security and privacy workshops (SPW). IEEE, pp 56–62

  139. Mothukuri V, Parizi RM, Pouriyeh S, Huang Y, Dehghantanha A, Srivastava G (2021) A survey on security and privacy of federated learning. Futur Gener Comput Syst 115:619–640

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Sachin.

Ethics declarations

Conflict of interest

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachin, D.N., Annappa, B. & Ambesange, S. Federated learning for digital healthcare: concepts, applications, frameworks, and challenges. Computing 106, 3113–3150 (2024). https://doi.org/10.1007/s00607-024-01317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-024-01317-7

Keywords

Mathematics Subject Classification