Skip to main content

Advertisement

Log in

An efficient function placement approach in serverless edge computing

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

Serverless computing has gained significant attention due to its promise of simplifying application development and deployment. Application providers in this computing model must implement their applications using primarily stateless functions, and they do not need complex infrastructure management. Due to the ever-increasing expansion of IoT devices and real-time services, serverless computing has become popular at the edge. IoT devices use many applications in serverless edge computing. In serverless edge computing, we face requests with different requirements and workloads for executing functions that must be placed and executed on heterogeneous edge devices in such a way that they meet the user’s requirements and the quality of service. This problem is known as dynamic function placement in serverless edge computing, and it is one of the critical challenges in this computing. In this paper, we introduce an autonomous dynamic function placement approach using the autonomic computing model and the deep reinforcement learning technique to make decisions about dynamic deploying functions in heterogeneous and dynamic edge infrastructure. An autonomous function placement framework is also designed based on the three-layer architecture of the public edge environment. When comparing the proposed solution with the other methods, simulation results indicate that the proposed solution reduces average Cost by 27.6% and delays by 28.8% while increasing edge node utilization by 18.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Algorithm 2
Fig. 6
Algorithm 3
Algorithm 4
Algorithm 5
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

No datasets were generated or analysed during the current study.

Notes

  1. https://pytorch.org/.

  2. https://www.jetbrains.com/pycharm/.

  3. https://github.com/AtiyaZahed/Autonomous-Agent.git.

References

  1. Angel NA, Ravindran D, Vincent PDR, Srinivasan K, Hu YC (2021) Recent advances in evolving computing paradigms: cloud, edge, and fog technologies. Sensors 22(1):196

    Google Scholar 

  2. Raith P, Nastic S, Dustdar S (2023) Serverless edge computing—where we are and what lies ahead. IEEE Internet Comput 27(3):50–64

    MATH  Google Scholar 

  3. Aslanpour MS, Toosi AN, Cicconetti C, Javadi B, Sbarski P, Taibi D, Assuncao M, Gill SS, Gaire R and Dustdar S (2021). Serverless edge computing: vision and challenges. In Proceedings of the 2021 Australasian computer science week multiconference pp. 1–10

  4. Hassan HB, Barakat SA, Sarhan QI (2021) Survey on serverless computing. J Cloud Comput 10:1–29

    MATH  Google Scholar 

  5. Xu G, Kong D, Zhangs K, Xu S, Cao Y, Mao Y, Duan J, Kang J, Chen X (2025) A model value transfer incentive mechanism for federated learning with smart contracts in AIoT. IEEE Internet Things J 12(3):2530–2544. https://doi.org/10.1109/JIOT.2024.3468443

  6. Lone AN, Mustajab S, Alam M (2023) A comprehensive study on cybersecurity challenges and opportunities in the IoT world. Secur Privacy 6(6):e318

    Google Scholar 

  7. Kjorveziroski V, Filiposka S, Trajkovik V (2021) Iot serverless computing at the edge: a systematic mapping review. Computers 10(10):130

    Google Scholar 

  8. Xie R, Tang Q, Qiao S, Zhu H, Yu FR, Huang T (2021) When serverless computing meets edge computing: architecture, challenges, and open issues. IEEE Wirel Commun 28(5):126–133

    Google Scholar 

  9. Upadhyay MK and Alam M (2024) Load balancing techniques in fog and edge computing: issues and challenges. In 2024 IEEE international conference on computing, power and communication technologies (IC2PCT) (Vol. 5, pp. 210–215). IEEE

  10. Sun G, Wang Z, Su H, Yu H, Lei B, Guizani M (2024) Profit Maximization of Independent Task Offloading in MEC-Enabled 5G Internet of Vehicles. IEEE Trans Intell Transp Syst 25(11):16449–16461. https://doi.org/10.1109/TITS.2024.3416300

  11. Filinis N, Tzanettis I, Spatharakis D, Fotopoulou E, Dimolitsas I, Zafeiropoulos A, Vassilakis C, Papavassiliou S (2024) Intent-driven orchestration of serverless applications in the computing continuum. Futur Gener Comput Syst 154:72–86

    Google Scholar 

  12. Ghorbian M, Ghobaei-Arani M, Asadolahpour-Karimi R (2024) Function placement approaches in serverless computing: a survey. J Syst Archit 157(18):103291. https://doi.org/10.1016/j.sysarc.2024.103291

  13. Cao K, Chen M, Karnouskos S and Hu S (2024) Reliability-aware personalized deployment of approximate computation IoT applications in serverless mobile edge computing. IEEE Transactions on computer-aided design of integrated circuits and systems

  14. Sun G, Wang Y, Yu H, Guizani M (2024) Proportional Fairness-Aware Task Scheduling in Space-Air-Ground Integrated Networks. IEEE Trans Serv Comput 17(6):4125–4137. https://doi.org/10.1109/TSC.2024.3478730

  15. Mampage A, Karunasekera S, Buyya R (2022) A holistic view on resource management in serverless computing environments: taxonomy and future directions. ACM Comput Surveys (CSUR) 54(11s):1–36

    Google Scholar 

  16. Krishnamurthi R, Kumar A, Gill SS and Buyya R (2023) Serverless computing: new trends and research directions. Serverless Computing: Principles Paradigms, pp.1–13

  17. Rutten E, Marchand N and Simon D (2017) Feedback control as MAPE-K loop in autonomic computing. In: Software engineering for self-adaptive systems III. Assurances: international seminar, Dagstuhl Castle, Germany, December 15-19, 2013, Revised Selected and Invited Papers (pp. 349–373). Springer International Publishing

  18. Palade A, Mukhopadhyay A, Kazmi A, Cabrera C, Nomayo E, Iosifidis G, Ruffini M and Clarke S (2020) A swarm-based approach for function placement in federated edges. In 2020 IEEE International Conference on Services Computing (SCC) (pp. 48–50). IEEE. https://doi.org/10.1109/SCC49832.2020.00013

  19. Das A, Imai S, Patterson S and Wittie MP (2020) Performance optimization for edge-cloud serverless platforms via dynamic task placement. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID) (pp. 41–50). IEEE. https://doi.org/10.1109/CCGrid49817.2020.00-89

  20. Mampage A, Karunasekera S and Buyya R (2021) Deadline-aware dynamic resource management in serverless computing environments. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid) (pp. 483–492). IEEE. https://doi.org/10.1109/CCGrid51090.2021.00058

  21. Tzenetopoulos A, Marantos C, Gavrielides G, Xydis S and Soudris D (2021) FADE: FaaS-inspired application decomposition and energy-aware function placement on the edge. In: Proceedings of the 24th international workshop on software and compilers for embedded systems (pp. 7–10). https://doi.org/10.1145/3493229.3493306

  22. Smith CP, Jindal A, Chadha M, Gerndt M and Benedict S (2022) Fado: Faas functions and data orchestrator for multiple serverless edge-cloud clusters. In: 2022 IEEE 6th International conference on fog and edge computing (ICFEC) (pp. 17–25). IEEE. https://doi.org/10.1109/ICFEC54809.2022.00010

  23. Xu Z, Zhou L, Liang W, Xia Q, Xu W, Ren W, Ren H, Zhou P (2023) Stateful serverless application placement in MEC with function and state dependencies. IEEE Trans Comput 72(9):2701–2716. https://doi.org/10.1109/TC.2023.3262947

    Article  MATH  Google Scholar 

  24. Mahmoudi N, Lin C, Khazaei H and Litoiu M (2019) Optimizing serverless computing: Introducing an adaptive function placement algorithm. In: Proceedings of the 29th Annual international conference on computer science and software engineering (pp. 203–213)

  25. Yu H, Irissappane AA, Wang H and Lloyd WJ (2021) Faasrank: Learning to schedule functions in serverless platforms. In: 2021 IEEE international conference on autonomic computing and self-organizing systems (ACSOS) (pp. 31–40). IEEE. https://doi.org/10.1109/ACSOS52086.2021.00023

  26. Xu D, Sun Z (2022) An adaptive function placement in serverless computing. Clust Comput 25(5):3161–3174. https://doi.org/10.1007/s10586-021-03506-x

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang Y, Ye K and Xu CZ (2021) An experimental analysis of function performance with resource allocation on serverless platform. In: International Conference on Cloud Computing (pp. 17–31). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-96326-2_2

  28. Martinez MM and Pandey SR (2022) Predictive function placement for distributed serverless environments. In 2022 25th Conference on Innovation in Clouds, Internet and Networks (ICIN) (pp. 86–90). IEEE. https://doi.org/10.1109/ICIN53892.2022.9758140

  29. Raza A, Akhtar N, Isahagian V, Matta I, Huang L (2023) Configuration and placement of serverless applications using statistical learning. IEEE Trans Netw Serv Manage 20(2):1065–1077. https://doi.org/10.1109/TNSM.2023.3254437

    Article  Google Scholar 

  30. Dehury CK, Poojara S, Srirama SN (2024) Def-DReL: towards a sustainable serverless functions deployment strategy for fog-cloud environments using deep reinforcement learning. Appl Soft Comput 152:111179. https://doi.org/10.1016/j.asoc.2023.111179

    Article  Google Scholar 

  31. Wang L, Liu A, Xiong NN, Zhang S, Wang T, Dong M (2024) SD-SRF: An intelligent service deployment scheme for serverless-operated cloud-edge computing in 6G networks. Futur Gener Comput Syst 151:242–259. https://doi.org/10.1016/j.future.2023.09.027

    Article  MATH  Google Scholar 

  32. Elgamal T, Sandur A, Nahrstedt K and Agha G (2018) Costless: optimizing cost of serverless computing through function fusion and placement. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC) (pp. 300–312). IEEE. https://doi.org/10.1109/SEC.2018.00029

  33. Rausch T, Rashed A, Dustdar S (2021) Optimized container scheduling for data-intensive serverless edge computing. Futur Gener Comput Syst 114:259–271. https://doi.org/10.1016/j.future.2020.07.017

    Article  MATH  Google Scholar 

  34. Bermbach D, Maghsudi S, Hasenburg J and Pfandzelter T (2020) Towards auction-based function placement in serverless fog platforms. In: 2020 IEEE international conference on fog computing (ICFC) (pp. 25–31). IEEE. https://doi.org/10.1109/ICFC49376.2020.00012

  35. Pelle I, Paolucci F, Sonkoly B, Cugini F (2021) Latency-sensitive edge/cloud serverless dynamic deployment over telemetry-based packet-optical network. IEEE J Sel Areas Commun 39(9):2849–2863. https://doi.org/10.1109/JSAC.2021.3064655

    Article  Google Scholar 

  36. Deng S, Zhao H, Xiang Z, Zhang C, Jiang R, Li Y, Yin J, Dustdar S, Zomaya AY (2021) Dependent function embedding for distributed serverless edge computing. IEEE Trans Parallel Distrib Syst 33(10):2346–2357. https://doi.org/10.1109/TPDS.2021.3137380

    Article  Google Scholar 

  37. Bermbach D, Bader J, Hasenburg J, Pfandzelter T, Thamsen L (2022) AuctionWhisk: using an auction‐inspired approach for function placement in serverless fog platforms. Softw Practice Exp 52(5):1143–1169. https://doi.org/10.1002/spe.3058

    Article  Google Scholar 

  38. De Maio V, Bermbach D and Brandic I (2022) TAROT: spatio-temporal function placement for serverless smart city applications. In: 2022 IEEE/ACM 15th international conference on utility and cloud computing (UCC) (pp. 21–30). IEEE. https://doi.org/10.1109/UCC56403.2022.00013

  39. Bocci A, Forti S, Ferrari GL, Brogi A (2023) Declarative secure placement of faas orchestrations in the cloud-edge continuum. Electronics 12(6):1332. https://doi.org/10.3390/electronics12061332

    Article  Google Scholar 

  40. Chen Z, Xiong B, Chen X, Min G, Li J (2024) Joint computation offloading and resource allocation in multi-edge smart communities with personalized federated deep reinforcement learning. IEEE Trans Mobile Comput 23(12):11604–11619. https://doi.org/10.1109/TMC.2024.3396511

    Article  MATH  Google Scholar 

  41. Chen Z, Liang J, Zhengxin Y, Cheng H, Min G, Li J (2025) Resilient collaborative caching for multi-edge systems with robust federated deep learning. IEEE Trans Netw. https://doi.org/10.1109/TNET.2024.3497958

    Article  MATH  Google Scholar 

  42. Zhang X, Hou D, Xiong Z, Liu Y, Wang S, Li Y (2024) EALLR: Energy-Aware Low-Latency Routing Data Driven Model in Mobile Edge Computing. IEEE Trans Consum Electron. https://doi.org/10.1109/TCE.2024.3507158

  43. Chen Z, Zhang J, Zheng X, Min G, Li J, Rong C (2024) Profit-aware cooperative offloading in uav-enabled mec systems using lightweight deep reinforcement learning. IEEE Internet Things J 11(12):21325–21336. https://doi.org/10.1109/JIOT.2023.3331722

    Article  Google Scholar 

  44. Cheng G, Xia J, Luo L, Mi H, Guo D, Ma RTB (2024) HyperPart: a hypergraph-based abstraction for deduplicated storage systems. IEEE Trans Cloud Comput 1–15. https://doi.org/10.1109/TCC.2024.3502464

  45. Fission (2021) https://docs.fission.io/docs/

  46. Tusa F, Clayman S, Buzachis A, Fazio M (2024) Microservices and serverless functions—lifecycle, performance, and resource utilisation of edge based real-time IoT analytics. Futur Gener Comput Syst 155:204–218. https://doi.org/10.1016/j.future.2024.02.006

    Article  Google Scholar 

  47. Verma S, Kawamoto Y, Fadlullah ZM, Nishiyama H, Kato N (2017) A survey on network methodologies for real-time analytics of massive IoT data and open research issues. IEEE Commun Surveys Tutorials 19(3):457–1477

    MATH  Google Scholar 

  48. Orfanos VA, Kaminaris SD, Papageorgas P, Piromalis D, Kandris D (2023) A comprehensive review of IoT networking technologies for smart home automation applications. J Sens Actuator Netw 12(2):30

    Google Scholar 

  49. Huda NU, Ahmed I, Adnan M, Ali M, Naeem F (2024) Experts and intelligent systems for smart homes’ transformation to sustainable smart cities: a comprehensive review. Expert Syst Appl 238:122380

    Google Scholar 

  50. Zhang S, Li T, Jin D, Li Y (2024) NetDiff: a service-guided hierarchical diffusion model for network flow trace generation. Proc ACM Netw 2(CoNEXT3):1–21. https://doi.org/10.1145/3676870

  51. Chen Y, Li H, Song Y, Zhu X (2024) Recoding hybrid stochastic numbers for preventing bit width accumulation and fault tolerance. IEEE Trans Circuits Syst I: Regul Pap PP(99):1–13. https://doi.org/10.1109/TCSI.2024.3492054

  52. Zhang C, Ekambaram A (2021) Reliability and resource management in serverless IoT applications: a survey. IEEE Internet Things J 8(5):3072–3083

    MATH  Google Scholar 

  53. Lu S, Xiao X (2024) Neuromorphic Computing for Smart Agriculture. Agriculture 14(11):1977. https://doi.org/10.3390/agriculture14111977

  54. Gholami A, Ghobaei-Arani M (2015) A trust model based on quality of service in cloud computing environment. Int J Database Theor Appl 8(5):161–170. https://doi.org/10.14257/ijdta.2015.8.5.13

  55. Amazon Web Services (2018) AWS Lambda. https://aws.amazon.com/lambda

  56. Microsoft (2018) Microsoft Azure Functions. https://azure.microsoft.com/en-ca/ services/functions

  57. Google, Inc (2018) Google Cloud Functions. https://cloud.google.com/functions

  58. IBM (2018) IBM Cloud Functions. https://console.bluemix.net/openwhisk

  59. OpenFaas: Serverless functions, made simple (2023)https://www.openfaas.com

  60. Kubeless (2021) https://kubeless.io/

  61. Shafiei H, Khonsari A, Mousavi P (2022) Serverless computing: a survey of opportunities, challenges, and applications. ACM Comput Surv 54(11s):1–32

    MATH  Google Scholar 

  62. Liu W, Hua M, Deng Z, Meng Z, Huang Y, Chuan H, Song S, Gao L, Liu C, Shuai B, Amir Khajepour L, Xiong XX (2023) A systematic survey of control techniques and applications in connected and automated vehicles. IEEE Internet Things J 10(24):21892–21916. https://doi.org/10.1109/JIOT.2023.3307002

    Article  MATH  Google Scholar 

  63. Liang C, Hongyang D, Sun Y, Niyato D, Kang J, Zhao D, Imran MA (2025) Generative AI-driven semantic communication networks: architecture, technologies, and applications. IEEE Trans Cognitive Commun Netw 11(1):27–47. https://doi.org/10.1109/TCCN.2024.3435524

    Article  Google Scholar 

  64. Prieto-Avalos G, Cruz-Ramos NA, Alor-Hernandez G, Sánchez-Cervantes JL, Rodriguez-Mazahua L, Guarneros-Nolasco LR (2022) Wearable devices for physical monitoring of heart: a review. Biosensors 12(5):292

    Google Scholar 

  65. Shaik T, Tao X, Higgins N, Li L, Gururajan R, Zhou X, Acharya UR (2023) Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. Wiley Interdisciplinary Rev Data Min Knowledge Discover 13(2):e1485

    Google Scholar 

  66. Nunes P, Santos J, Rocha E (2023) Challenges in predictive maintenance—a review. CIRP J Manuf Sci Technol 40:53–67

    MATH  Google Scholar 

  67. Murtaza AA, Saher A, Zafar MH, Moosavi SKR, Aftab MF, Sanfilippo F (2024) Paradigm shift for predictive maintenance and condition monitoring from Industry 4.0 to Industry 5.0: A systematic review, challenges and case study. Results in Engineering 24:102935. https://doi.org/10.1016/j.rineng.2024.102935

    Article  Google Scholar 

  68. Sun G, Li Y, Liao D, Chang V (2018) Service function chain orchestration across multiple domains: a full mesh aggregation approach. IEEE Trans Netw Serv Manag 15(3):1175–1191. https://doi.org/10.1109/TNSM.2018.2861717

  69. Hegde, S.B., Premasudha, B.G., Hooli, A.C. and Akshay, M.J., 2024, February. A Review on Smart Traffic Management with Reinforcement Learning. In International Congress on Information and Communication Technology (pp. 455–470). Singapore: Springer Nature Singapore.

  70. Li Z, Guo L, Cheng J, Chen Q, He B, Guo M (2022) The serverless computing survey: a technical primer for design architecture. ACM Comput Surveys (CSUR) 54(10s):1–34. https://doi.org/10.1145/3508360

    Article  MATH  Google Scholar 

  71. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I. and Zaharia, M., 2010. A view of cloud computing. Communications of the ACM53(4), pp.50–58. https://doi.org/10.1145/1721654.1721672

  72. AWS Greengrass (2020), https://docs.aws.amazon.com/greengrass/

  73. Stackowiak R (2019) Azure IoT Hub. Apress, Berkeley, CA, Azure Internet of Things Revealed. https://doi.org/10.1007/978-1-4842-5470-7_4

    Book  Google Scholar 

  74. Li S, Baştuğ E, Di Martino C and Di Renzo M (2023) Dynamic function allocation in edge serverless computing networks. In GLOBECOM 2023–2023 IEEE global communications conference (pp. 486–491). IEEE

  75. Lara E, Aguilar L, Sanchez MA and García JA (2019) Adaptive security based on mape-k: a survey. Appl Decision-Making Appl Comput Sci Eng pp.157–183

  76. Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50

    MathSciNet  MATH  Google Scholar 

  77. McLean A and Sterritt R (2023) Autonomic computing in the cloud: an overview of past, present and future trends. In: The 2023 IARIA annual congress on frontiers in science, technology, services, and applications: technical advances and human consequences

  78. Metzger F, Hoßfeld T, Bauer A, Kounev S, Heegaard PE (2019) Modeling of aggregated IoT traffic and its application to an IoT cloud. Proc IEEE 107(4):679–694

    Google Scholar 

  79. Dodge Y (2008) The concise encyclopedia of statistics. Springer, New York

    MATH  Google Scholar 

  80. Wang L, Li M, Zhang Y, Ristenpart T, Swift M (2018) Peeking behind the curtains of serverless platforms, in: Proceedings of the USENIX Annual Technical Conference, ATC pp. 133–146

  81. Kingma DP (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

  82. Gkonis P, Giannopoulos A, Trakadas P, Masip-Bruin X, D’Andria F (2023) A survey on IoT-edge-cloud continuum systems: status, challenges, use cases, and open issues. Future Internet 15(12):383

    Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Atiya zahed, Mostafa Ghobaei-Arani, Leiila Esmaili conducted this research. Atiya zahed: Methodology, Software, Validation, Writing original draft. Mostafa Ghobaei-Arani: Investigation, Resources, Data curation, Visualization. Leiila Esmaili: Writing original draft.

Corresponding author

Correspondence to Mostafa Ghobaei-Arani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahed, A., Ghobaei-Arani, M. & Esmaeili, L. An efficient function placement approach in serverless edge computing. Computing 107, 80 (2025). https://doi.org/10.1007/s00607-025-01438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00607-025-01438-7

Keywords

Mathematics Subject Classification