
Vol.:(0123456789)1 3

Requirements Engineering (2023) 28:97–115
https://doi.org/10.1007/s00766-022-00377-5

ORIGINAL ARTICLE

Aligning requirements and testing through metamodeling
and patterns: design and evaluation

Taciana Novo Kudo1,2 · Renato de Freitas Bulcão‑Neto2 · Valdemar Vicente Graciano Neto2 ·
Auri Marcelo Rizzo Vincenzi1

Received: 17 December 2020 / Accepted: 23 February 2022 / Published online: 1 June 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Poorly executed requirements engineering activities profoundly affect the deliverables’ quality and project’s budget and
schedule. High-quality requirements reuse through requirement patterns has been widely discussed to mitigate these adverse
outcomes. Requirement patterns aggregate similar applications’ behaviors and services into well-defined templates that can
be reused in later specifications. The abstraction capabilities of metamodeling have shown promising results concerning the
improvement of the requirement specifications’ quality and professionals’ productivity. However, there is a lack of research
on requirement patterns beyond requirements engineering, even using metamodels as the underlying structure. Besides,
most companies often struggle with the cost, rework, and delay effects resulting from a weak alignment between require-
ments and testing. In this paper, we present a novel metamodeling approach, called Software Pattern MetaModel (SoPaMM),
which aligns requirements and testing through requirement patterns and test patterns. Influenced by well-established agile
practices, SoPaMM describes functional requirement patterns and acceptance test patterns as user stories integrated with
executable behaviors. Another novelty is the evaluation of SoPaMM’s quality properties against a metamodel quality evalu-
ation framework. We detail the evaluation planning, discuss evaluation results, and present our study’s threats to validity.
Our experience with the design and evaluation of SoPaMM is summarized as lessons learned.

Keywords Requirement · Testing · Pattern · Metamodel · Quality · Evaluation

1 Introduction

The value of requirements engineering (RE) strongly
impacts software projects whenever requirements-related
activities are poorly executed. Incorrect, omitted, misinter-
preted, or conflicting requirements usually result in extrapo-
lated budget and delivery times [16, 44].

In the last decade, requirements reuse [12, 13, 17, 19,
22] has been a feasible alternative to mitigate those issues,
making the RE tasks more prescriptive and systematic while
facilitating the reuse of existing requirements artifacts. A
fairly discussed reuse approach is the requirement pat-
tern (RP) concept, which is an abstraction that aggregates

behaviors and services observed in multiple similar applica-
tions [46]. Usually, RP guides requirements elicitation and
specification through well-defined templates that can be
reused in later specifications [1, 14, 29].

A promising approach for representing RP is through
metamodeling [8] because it raises the level of abstraction
at which software is conceived, implemented, and evolved.
As related work, Franch et al. [18] propose a metamodel
that defines a structure of requirement patterns themselves,
the relationships among them, and classification criteria for
grouping them. Ya’u et al. [49]’s metamodel comprises a
reusable structure, variability modeling, and traceability
of software artifacts for software product line engineering.
Metamodeling provides a general representation structure
for RP toward improving the quality of specifications and the
requirements engineers’ productivity. Despite those benefits
to the RE process, the traceability between RP and software
artifacts produced in other development phases (e.g., other
types of software patterns) is still a road to pave [7].

 * Taciana Novo Kudo
 taciana@ufg.br

1 Departamento de Computação, Universidade Federal de São
Carlos (UFSCar), SP, São Carlos, Brazil

2 Instituto de Informática, Universidade Federal de Goiás
(UFG), GO, Goiânia, Brazil

http://orcid.org/0000-0002-7238-0562
http://orcid.org/0000-0001-8604-0019
http://orcid.org/0000-0003-2190-5477
http://orcid.org/0000-0001-5902-1672
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-022-00377-5&domain=pdf

98 Requirements Engineering (2023) 28:97–115

1 3

For instance, consider the alignment between RE and
testing. The popular V-model [39] highlights the influence
of requirements activities in the software development life
cycle (SDLC) by interrelating the user acceptance testing
and requirement analysis phases to determine whether a soft-
ware system satisfies the requirements specified. However,
most software companies still struggle with the cost, rework,
and delay effects resulting from a weak alignment between
requirements and testing [10, 15].

In this paper, our general goal is to extend RP’s benefits
to other SDLC stages beyond RE. We describe the design
and the evaluation of a metamodeling strategy to relate
different software patterns, called Software Pattern Meta-
Model (SoPaMM) [2]. Currently, SoPaMM aligns functional
requirement patterns (FRP) and acceptance test patterns
(ATP), which structure generic testing solutions to recur-
rent behaviors from different scenarios [31] and help a tester
understand the context of a testing practice [30]. Potential
candidates as an ATP include repetitive, alike, and high-
value test practices.

SoPaMM defines how FRP and ATP can be written,
organized, related, and classified. SoPaMM borrows con-
cepts and practices from the Behavior-Driven Development
(BDD) agile methodology [11] by describing FRP via user
stories and associating it with behaviors through the Ger-
khin language. Integrating with existing agile methodologies
leverages the use of SoPaMM, as these methodologies are
common practices in today’s software industry. Furthermore,
the description of FRPs with BDD concepts allows, with
adequate tool support, to automate acceptance tests associ-
ated with FRPs.

As metamodel quality impacts the terminal models’
quality,1 we evaluated SoPaMM using the Metamodel
Quality Requirements and Evaluation (MQuaRE) frame-
work [3], comprising an evaluation process, metamodel
quality requirements and measures, and a quality model.
Evaluation results report the SoPaMM’s levels of compli-
ance, conceptual suitability, usability, maintainability, and
portability under six evaluators’ perspective.

This work’s contributions are threefold:

1. A metamodeling solution for aligning requirements and
testing;

2. The joint use of requirement patterns and an agile testing
methodology;

3. The metamodel quality evaluation.

This paper is organized as follows: Sect. 2 discusses related
work; Sect. 3 presents background; Sects. 4 and 5 describe
the SoPaMM metamodel and how to use it to build a cata-
logue containing requirement patterns and test patterns;
Sect. 6 presents the evaluation of the metamodel using a
metamodel quality assessment framework, and Sect. 7 pre-
sents conclusions and future work.

2 Related work

This section compares metamodeling approaches for soft-
ware requirement patterns. We examine related work con-
sidering the metamodel patterns, the formalism for patterns
representation, tool support, and metamodel evaluation.
Table 1 summarizes the comparison between SoPaMM and
related work.

Franch et al. [18] define the structure of an RP, the types
of relationships among RPs, and classification criteria for
grouping them. The main idea behind using metamodeling
is to provide more flexibility on how to model RPs by decou-
pling the types of RPs and allowing the types of relation-
ships more configurable. Videira and Da Silva [45] develop
a requirements specification language based on identifying
the most frequent linguistic patterns used in requirements
documents. Such specification language relies on metamodel
concepts and mapping rules between these and sentences
found in requirements documentation. In turn, Badamasi
et al. [49] present a metamodel-based representation for RPs,
including variability modeling and software artifacts trace-
ability. The main goal is to improve the systematic reuse of
RPs by integrating concepts of a software product line and
model-driven engineering.

Two of these proposals [18, 45] cover both functional and
nonfunctional requirement patterns (FRP and NFRP, respec-
tively). In contrast, one work represents NFRP only [49].
To the best of the authors’ knowledge, the SoPaMM meta-
model we propose is the only one proposing the alignment

Table 1 Metamodeling
approaches for requirement
patterns

References Pattern Formalism Tool Evaluation

[45] (N)FRP CNL – –
[49] NFRP NL – –
[18] (N)FRP NL PABRE-Man Catalogues
SoPaMM (N)FRP ATP CNL TMEd Catalogues and quality

1 Terminal models are metamodel instances as defined in the Meta-
Object Facility (MOF) architecture [33].

99Requirements Engineering (2023) 28:97–115

1 3

of functional requirement patterns (FRP) and acceptance test
patterns (ATP).

Multiple representation formats have been used: tradi-
tional natural language (NL) [18, 49], and controlled natural
language (CNL) with a subset of meaningful terms for pat-
tern representation [45]. Comparatively, our metamodeling
solution goes further by using two easy-to-use and widely
accepted controlled natural languages in the agile software
industry: user stories and the Gherkin language [40] for
requirements and behaviors specification, respectively.

Tools are an effective strategy to assist practitioners’ prac-
tices in the use of requirement patterns. In previous work [4],
we report the development of the Terminal Model Editor
(TMEd), a tool that facilitates the definition of software
patterns (i.e., instances of SoPaMM) and the maintenance
and evolution of a patterns catalogue. What differentiates
TMEd and PABRE-Man [18, 35] is the type of software
pattern covered by the latter, i.e., only requirement patterns,
whereas TMEd also handles test patterns.

Finally, a single-related work evaluates its metamodel
approach elaborating on catalogues of FRP and NFRP as
metamodel instances [14, 18, 36]. Application domains
covered by these catalogues of patterns include content
management and call for tender processes. In our pro-
posal, we developed a catalogue containing NFRP as well
as FRP aligned to ATP for the certification of electronic
health record systems [2, 4]. In this paper, we go further by
evaluating the quality of the SoPaMM metamodel using a
quality evaluation framework [3, 5] as the existing meta-
modeling-based pattern approaches lack such an evaluation
perspective.

In brief, the SoPaMM metamodel has distinct but signifi-
cant aspects compared with related work:

• it is the only solution that bridges RPs to other software
patterns such as ATPs; this allows representing more
complex and valuable pattern-based artifacts such as a
test traceability matrix;

• it borrows usual agile practices (user story and the Gher-
kin notation) and takes advantage of tool support; this
may reduce the SoPaMM’s learning curve.

• it is the only one evaluated from a quality perspective;
this allows anticipating software patterns’ quality built
upon it regarding multiple characteristics.

3 Background

This section presents two key components of our meta-
modeling approach aligning requirement and test patterns:
the Behavior-Driven Development (BDD) methodology
and the Metamodel Quality Requirements and Evaluation
(MQuaRE) framework.

3.1 Behavior‑driven development (BDD)

BDD describes a software process widely adopted in agile
software engineering practices [32]. BDD’s main goal is to
close the gap between business and technical teams regard-
ing understanding the expected behavior of the software to
be developed [11]. Therefore, the key element in BDD is the
software’s behavior.

To achieve collaboration and shared comprehension
between people with likely different expectations, two BDD
practices deserve further special attention: software func-
tional specification as user stories and the alignment of each
user story with executable scenarios.

User stories describe software features using a natural
language syntax: “AS a <role>, I CAN <capability>, SO
THAT <receive benefit>)”. As such, user stories are more
closely related to business goals, facilitating communication
in a project.

Furthermore, domain experts, testers, and developers col-
laborate on describing scenarios as features’ expected behav-
iors written in the Gherkin language. The natural order of a
scenario is: Given one or more preconditions, When a set of
actions is performed, Then an outcome is obtained.

Next, we present the Notifications feature and the Gher-
kin syntax describing one of this feature’s desired behav-
ior (someone likes a post). Observe the level of details
expressed in each scenario’s component (preconditions,
execution steps, and results), including test data examples.

 This easy-to-use but powerful behavior specification syn-
tax enables BDD-oriented tools can automatically gener-
ate technical and end-user documentation, such as test case
specifications. Our metamodeling proposal benefits from
how BDD describes features as user stories integrated with
behaviors represented as executable scenarios.

100 Requirements Engineering (2023) 28:97–115

1 3

3.2 The MQuaRE framework

MQuaRE is an integrated framework composed of an evalu-
ation process that arranges metamodel quality requirements
(MQR) and measures (MQM) and a metamodel quality
model with activities, tasks, input and output artifacts,
and users’ roles [3]. The metamodel quality characteristics
and sub-characteristics were set by compiling and com-
paring related research contributions [27, 28, 38, 43] with
international standards’ quality models, such as ISO/IEC
25010 [24] and ISO/IEC 9126 [23], with minor amendments.

MQR may comprise multiples aspects of a metamodel,
e.g., whether it is easy to use and maintain or compliant to
specific standards. The current version of MQuaRE provides
19 MQRs that meet those preconditions and can be reused
by metamodel users [5].

The MQuaRE’s quality model categorizes the MQRs into
five characteristics (C) subdivided into eleven sub-charac-
teristics (SC) described in Fig. 1. MQuaRE also includes 23
MQMs bound to its quality model, i.e., these are quantifica-
tions of quality characteristics and sub-characteristics of a
metamodel under evaluation (see Fig. 1). For the sake of
brevity, we outline each metamodel quality characteristic in
terms of its respective quality measures. Further information
can be found elsewhere [3, 5].

1. Compliance: the degree to which the conceptual founda-
tion of a metamodel complies with theories, regulations,
standards, and conventions.

2. Conceptual suitability: the degree to which the set of
metamodel concepts covers all the specified require-
ments, is correctly modeled, facilitates the accomplish-

Fig. 1 The MQuaRE quality model, measures and requirements

101Requirements Engineering (2023) 28:97–115

1 3

ment of modeling tasks, and is appropriate for perform-
ing these tasks.

3. Usability: the degree to which users can recognize
whether a metamodel is appropriate for their needs
considering the metamodel specifications’ particulari-
ties. For instance, the completeness and demonstration
capability of usage scenarios, the clearness and correct
understanding of metamodel concepts, and the docu-
mentation’s guidance degree for metamodel usage.

4. Maintainability: the degree to which changes result in
minimal impact on the metamodel structure, the meta-
model can be used in more than one application domain,
and the metamodel can be effectively and efficiently
modified without introducing inconsistencies or degrad-
ing its quality.

5. Portability: the degree to which a metamodel can effec-
tively and efficiently be adapted for different application
domains and which a metamodel can replace another
metamodel for the same purpose.

The MQuaRE’s evaluation process contains five main activi-
ties performed by an evaluation requester or an evaluator,
as follows:

1. Establish the metamodel evaluation requirements: the
evaluation requester defines the MQRs according to the
general evaluation purpose (e.g., estimate the final qual-
ity of metamodel, compare between distinct metamodels
for the same domain, or assess the positive and negative
aspects of a metamodel).

2. Specify the metamodel evaluation: based on the MQRs
defined, the evaluation requester selects the MQMs,
establishes the respective target value and acceptable
tolerance value, and defines formulas to calculate the
quality grades of characteristics and sub-characteristics.
This amount of information constitutes a high-level eval-
uation plan.

3. Design the metamodel evaluation: taking the previ-
ous evaluation plan as a starting point, the evaluation
requester elaborates on a detailed metamodel quality
evaluation plan (MQEP), containing target metamodel
specifications, the measurement functions for each
MQM, an evaluation schedule, and others.

4. Execute the metamodel evaluation: the metamodel eval-
uator uses the information of MQEP to calculate meta-
model quality measurements, apply the target value and
acceptable tolerance value, compute the quality grades
of quality characteristics and sub-characteristics, and
make observations about likely problems during the
evaluation.

5. Conclude the metamodel evaluation: the metamodel
evaluator and the evaluation requester shall carry out a
joint review of the evaluation results. All documentation

generated must be reassessed, and adaptations can be
made when justified and documented.

Regarding our metamodel’s quality evaluation, we system-
atically performed the MQuaRE process and its activities.
Further details are found in Sect. 6.

4 The SoPaMM metamodel

The SoPaMM’s core idea is the specification of functional
requirement patterns (FRP) linked to acceptance test patterns
(ATP). Figure 2 depicts the most significant components of
an FRP related to an ATP. For the sake of conciseness, some
FRP and ATP metadata are not shown.

Influenced by the BDD agile methodology, an FRP is a
composition of Feature elements described through the user
story syntax, as such:

As: the stakeholder who benefits from the Feature;
I_can: the Feature itself;
So_that: the Feature’s aggregated value.

 Using the BDD’s Gherkin syntax, one or more Scenarios
represent Feature’s behaviors, where:

Given describes, in one or more clauses, the Scenario’s
initial context;

When describes the events that trigger a Scenario;
Then describes, in one or more clauses, the Scenario’s

expected outcomes.

In the example of Fig. 2, FRP_User_Creation describes
an excerpt of a user creation feature. Observe the FRP struc-
ture in which an administrator user is the stakeholder who
benefits from this feature in order that a new user is regis-
tered for the system. This feature has two behaviors rep-
resented: a successful and an unsuccessful scenario, both
linked to a same precondition, i.e., the attempt of creating
a new user. But, the scenarios’ execution steps are distinct
regarding the user data’s validity. Similarly, one different
outcome is represented for each scenario, i.e., the new user
registration and the display of an error message.

Finally, the Example concept allows defining and linking
multiple data to each scenario. Observe that each scenario
has two data instances so that the one scenario registers
a new user successfully, whereas the other scenario does
not due to invalid examples of user identification number.
This FRP-Feature-Scenario-Example representation is what
defines our behavior-driven functional requirement pattern
approach.

Now, consider the representation of ATP_User_Crea-
tion in Fig. 2. The ATP is composed of two test cases, each

102 Requirements Engineering (2023) 28:97–115

1 3

related to a particular test scenario, i.e., (un)successful user
creation. Each test case contains preconditions, expected
results, and postconditions (scenario’s Given-When-Then
clauses) as well as input and output test data from the
respective Example of Scenario.

Once presented the FRP and ATP concepts, we outline
the entire SoPaMM metamodel illustrated in Fig. 3. Simi-
lar to the PABRE metamodel [18, 35, 36], the Catalogue
element is a means of systematically gathering patterns,

usually addressing the most common problems for a par-
ticular application domain. The Catalogue concept is the
coarsest grained reuse unit in SoPaMM.

A Software Pattern Bag (SPB) is a composition of multi-
ple Software Pattern (SP) elements that, in turn, represent an
extensible point to accommodate different types of SP, such
as requirement, test, or even design patterns, with minimal
impact on the structure defined. Unlike other pattern cata-
logues found in the literature, the SPB concept in SoPaMM

Fig. 2 The structure and con-
tents of an FRP associated with
an ATP

103Requirements Engineering (2023) 28:97–115

1 3

Fig. 3 The SoPaMM meta-
model

104 Requirements Engineering (2023) 28:97–115

1 3

allows organizing, in a same catalogue, software patterns
for problems at different stages of the SDLC. In comparison
with Catalogue, an SPB works as a fine-grained reuse unit of
multiple types of related patterns (e.g., FRP and ATP) and
consequently may be of great utility during the development
of software project documentation.

Note in Fig. 3 that industry standards [34] and classic
literature on software patterns [20, 21, 37, 46] contribute
to SP metadata’s definition (e.g., problem, context, forces,
solution).

Although the literature defines relationship types between
requirement patterns (e.g., extends, has, uses) [46], we
implement a broader definition of relationship types in
SoPaMM. Due to flexibility reasons, these are not prede-
fined (attribute Name in RelationshipType) and allow relat-
ing catalogues, software pattern bags, and software patterns
in general (i.e., CatalogueRelationship, SPBagRelationship,
and SPRelationship, respectively).

Non-functional requirement pattern (NFRP) is a composi-
tion of software system properties (behavioral constraints or
quality attributes) described by textual attributes (i.e., name
and description). As an example of NFRP for several exist-
ing applications, user credentials must be validated by an
authentication server, forbidding user authentication on the
client-side.

Noteworthy that this is an enhanced version of SoPaMM.
The main differences from its previous versions [2, 4] are
the insertion of the Catalogue concept, the redefinition
of the SPB’s and SP’s attributes, and the reformulation
of how to handle test cases. In early versions, a test case
was a composition of steps and UI elements (for web and
mobile applications) represented by the Page Object design
pattern [26, 42]. However, the removal of UI elements
in the current version makes SoPaMM more flexible and
technology-independent.

5 How to use SoPaMM

The purpose of this section is twofold. Firstly, it introduces
a pattern catalogue building method using SoPaMM. Sec-
ondly, it reports an instantiation of this method on develop-
ing a catalogue for electronic health record (EHR) systems.

5.1 A method for developing SoPaMM‑based
pattern catalogues

This section presents a general method for elaborating on
pattern catalogues based on the SoPaMM grammar. Prefer-
ably, this method should be performed by a requirements
engineer supported by a domain expert, if necessary. How-
ever, knowledge about the SoPaMM constructs (e.g., SPB,
FRP, and ATP) is mandatory.

Two phases are present: one in which candidate patterns
are found (steps 1 to 5) and another in which final patterns
are organized and written (steps 6 and 7).

1. Gather as much as possible available requirements doc-
umentation, test case specifications, and pattern cata-
logues.

2. Study each requirement and test case and classify it:
which type would it be?

3. If an existing pattern can be applied to it, record that fact
and go on.

4. If an existing pattern does not quite fit, study the require-
ment or test case to see if you could develop a new, more
specialized pattern for it. If so, classify it as a functional
(FRP) or nonfunctional requirement pattern (NFRP) or
acceptance test pattern (ATP), suggest a name, and add
it to the list of candidates.

5. When you have gone through all specifications, review
the candidate patterns looking for duplicates or overlaps,
and resolve these inconsistencies.

6. Then, group the resulting software patterns (SP) into
software pattern bags (SPB). Note that an SPB allows
the composition of multiple and different SP types, such
as FRP, NFRP, and ATP.

7. Write each software pattern.

(a) If the pattern is an NFRP, create one System
Property element for each behavioral constraint
or quality attribute found in the specifications.
Thus, a particular NFRP may be a composition of
System Property elements.

(b) If the pattern is an FRP, then create a Feature ele-
ment in it using the user story syntax. For each
Feature element, search for scenarios describing
its behavior in the specifications available. For
each feature’s behavior found in the specifica-
tions, elaborate on it through the Gherkin lan-
guage syntax. Otherwise, create a proper scenario
from scratch, in Gherkin, if no scenario is linked
to a feature. Search in the specifications for data
statements that might be used as data examples
to execute each scenario describing a feature’s
behavior. If no data examples are available, cre-
ate and assign them to each scenario stated.

(c) If the pattern is an ATP, create and associate a test
case with a proper FRP scenario. For each test
case defined, classify the scenario’s data examples
as input and output data. As a result, there must be
one test case for each scenario with preconditions,
actions, expected outcomes, and the correspond-
ing input and output data examples.

105Requirements Engineering (2023) 28:97–115

1 3

In step 1, test case specifications have been given special
attention because SoPaMM allows the creation of test pat-
terns and their alignment with requirement patterns. This
is a new feature of our approach compared to related work.

In step 4, it is not a concern if one cannot foresee a pat-
tern being useful in specifying a requirement or test case.
Requirements and test cases do not always conveniently fit
the patterns. Unfortunately, there are no strict rules for iden-
tifying requirement patterns [46] and test patterns [31].

5.2 SoPaMM instantiation

According to the MOF architecture [33], metamodel
instances are called terminal models, which, in turn,
describe real-world application models. In our approach,
SoPaMM instances are software pattern catalogues serving
as guidance for real-world software specifications, e.g., test
case specifications. Using the 7-step method previously pre-
sented, we instanced SoPaMM to build a pattern catalogue
for electronic health record (EHR) systems.

The Brazilian Health Informatics Society (BHIS) offers
a quality certification process of EHR systems based on an
extensive list of requirements and test scripts elaborated by
BHIS’s skilled staff. These specifications result from a com-
pilation of several EHR projects and experiences with firm
adherence to international standards.

The BHIS’s requirements for quality certification of an
EHR-System are organized into two Security Assurance

Levels (SAL). The first level (SAL1) determines mandatory
requirements for exchanging information on supplementary
health. The second level (SAL2) allows replacing paper
health records with their electronic equivalents. Compli-
mentary, BHIS also provides an operational manual of tests
and analysis for EHR system certification composed of test
scripts.

Regarding step 1 of the SoPaMM instantiation process,
these requirements and test scripts are the principal informa-
tion sources, with no support of catalogues.

In step 2, a 17-year experienced software engineer with
a background in requirements and testing and strong knowl-
edge of the SoPaMM grammar built the pattern catalogue for
EHR systems. Aiming at the minimum legal requirements
for EHR systems certification, she took into account the 84
SAL1 requirements and the 40 respective test scripts. There
was no need for a domain expert due to the discussion of
such information by specialists in Health Informatics.

For better comprehension, the BHIS documentation
contains the SAL1.04.08 legal requirement classified as a
functional requirement. This requirement describes who has
access to the patient’s medical record (i.e., only the patient
or his/her legal guardian). The BHIS documentation also
includes the SAL1.S018 test script. It describes the set of
procedures a user must perform to meet the SAL1.04.08
requirement. The following is an excerpt of the SAL1.04.08
requirement and the respective SAL1.S018 test script:

106 Requirements Engineering (2023) 28:97–115

1 3

In the first iterations of the method, step 3 had no result
due to the nonexistence of previous patterns, as described
in step 1. In other words, the association between a software
pattern and an input requirement/test procedure was possible
only when the engineer started identifying software patterns.

In the last iteration of classifying software patterns (step
4), the engineer recognized 65 FRP, 36 NFRP, and 40 ATP.
Excluding similarities and overlaps, the total number of
patterns found was 18 FRP, 36 NFRP, and 18 ATP (step
5). Access to the patient’s medical record is a mandatory
function in every EHR system. Thus, it may be specified as
an FRP, called FRP_UserAccessToEHR, and be reused in
various situations of use in an EHR system. For instance,
when a patient needs to schedule a clinical exam, view
imaging exam reports, or print the medication prescrip-
tion. Furthermore, regarding the test procedures required

to validate that requirement, these may be developed in
parallel as a set of test cases constituent of an ATP named
ATP_UserAccessToEHR.

In step 6, the engineer organized the final software pat-
terns into software pattern bags (SPB). Considering both the
FRP and the ATP cited, these are interrelated and organized
into an SPB named SPB_UserAccessToEHR.

Finally, the engineer started the patterns writing process
using the SoPaMM constructs (step 7), as shown next. The
FRP representation comprises a feature (UserAccessToEHR)
and its respective behaviors as successful and unsuccessful
scenarios. Each scenario has input and/or output test data
(see EXAMPLE constructs). Besides, observe that the value
of the SOURCE attribute refers to the requirement and the
test procedure (SAL1.04.08 and SAL1.S018) that contribute
to the specifications of FRP and ATP.

Fig. 4 The pattern catalogue for EHR systems in the TMEd user interface

107Requirements Engineering (2023) 28:97–115

1 3

108 Requirements Engineering (2023) 28:97–115

1 3

As the patterns catalogue specification in step 7 is not
a trivial task, a software engineer usually builds patterns
through tool support. Therefore, we developed the Terminal
Model Editor (TMEd) tool [4] on top of the Eclipse Mod-
eling Framework (EMF). TMEd allows the creation and edit-
ing of every SoPaMM construct (e.g., SPB, FRP, and ATP)
and an XML output file generation following the SoPaMM
grammar. Besides, it is the only tool supporting the paral-
lel specification of FRP and ATP to the best of the authors’
knowledge.

Figure 4 illustrates the TMEd user interface. There is a
list of SoPaMM-based pattern catalogues on the left-hand
side, including the HIA_EHRSystem presented in this sec-
tion. On the right-hand side is that pattern catalogue contents
structured as a tree of SoPaMM elements.

The Catalogue (A) is at the highest hierarchical level,
and the contents of the SPB_UserAccessToEHR bag (B)
comprise the FRP_UserAccessToEHR and ATP_UserAc-
cessToEHR (C and D, respectively). Two patient-related sce-
narios of the UserAccessToEHR feature (E) are highlighted:
successful (F) and unsuccessful scenarios (G) associated
with the respective test cases (H and I) in the ATP.

Those test cases use the corresponding test data (J and
K) defined in the FRP’s scenarios (F and G). The distinction
between input and output data (L, M, N, and O) from those
scenarios is implemented in the test cases. The remaining
scenarios involving the patient’s legal guardian are also rep-
resented in the catalogue.

In brief, we claim the following benefits of the paral-
lel development of FRP and ATP using the SoPaMM
metamodel:

1. the earlier the FRP’s feasibility is analyzed, the higher
is the FRP’s quality;

2. the number of errors in an FRP-ATP alignment is likely
lower because they are specified together;

3. the combination of FRP and ATP works as a testable
reuse unit because scenarios have preconditions and
postconditions that can be validated and automatically
processed;

4. traceability is visible in earlier development stages;
5. if the reuse of the whole catalogue is not suitable, one

may reuse one or more SPBs that meet the project’s
needs;

6. the reuse of FRP-ATP in software projects should reduce
the development time and cost.

6 Quality evaluation

This section details the quality evaluation of the SoPaMM
metamodel using the MQuaRE framework described in
Sect. 3. First, we describe the evaluation planning and

design, including the evaluation purpose, the evaluators’
profiles, the evaluation supporting artifacts, the MQuaRE’s
activities performed by the participants, and the evaluation
period. Then, we present and discuss the evaluation results
and threats to the validity of this work.

6.1 Evaluation planning and design

As evaluation requesters, the SoPaMM’s developers per-
formed the first three activities of the MQuaRE’s evaluation
process described in Sect. 3.2. As a result, the evaluation
requesters elaborated on a detailed metamodel quality evalu-
ation plan (MQEP) containing the following information:

Evaluation purpose: the main goal is to estimate the
SoPaMM’s final quality regard-
ing the MQuaRE’s quality
model.

Evaluation specification: according to the evaluation
purpose, the MQuaRE qual-
ity model shall support SoPa-
MM’s evaluation, including
11 quality sub-characteristics

Table 2 Relation between MQuaRE’s quality measures and support-
ing artifacts

ID Metamodel quality measure (MQM) Sup-
porting
artifact

CCc-1 Conceptual foundation 1
CCc-2 Backward Traceability 1
CCp-1 Conceptual coverage 1, 2
CCr-1 Conceptual correctness 1, 2, 3
CAp-1 Conceptual appropriateness of usage objective 1, 3
CAp-2 Conceptual appropriateness of metamodel 1, 3
UAp-1 Description completeness 1, 3
UAp-2 Demonstration coverage 1, 3
UAp-3 Evident concepts 1, 2
UAp-4 Concept understandability 1, 2
ULe-1 User guide completeness 1, 3
MMo-1 Coupling of concepts 2
MMo-2 Complexity of exercise 2
MRe-1 Reusability per application domain 1, 3, 5
MMd-1 Conceptual stability 1, 4
MMd-2 Change recordability 1, 4
MMd-3 Change impact 1, 4
MMd-4 Modification impact localization 1, 4
MMd-5 Modification correctness 1, 4
PAd-1 Adaptability per application domain 3, 5
PRe-1 Usage similarity 3, 6
PRe-2 Metamodel quality equivalence 1, 2, 6
PRe-3 Conceptual inclusiveness 1, 2

109Requirements Engineering (2023) 28:97–115

1 3

associated with 23 quality
measures (MQM) and 19 qual-
ity requirements (MQR), as in
Fig. 1. Besides, one defined the
SoPaMM’s quality grades using
the arithmetic mean of both its
MQMs and sub-characteristics.
Consider the Usability charac-
teristic in Fig. 1, comprising the
appropriateness recognizability
and the learnability sub-charac-
teristics. The SoPaMM’s usabil-
ity grade shall be the arithmetic
mean between these sub-char-
acteristics. In turn, the former’s
grade is given by the arithmetic
mean of its MQMs: description
completeness, demonstration
coverage, evident concepts,
and concept understandability.
Finally, the SoPaMM’s learn-
ability grade is given by the
measurement value of its only
MQM: user guide completeness.
Target and acceptable tolerance
values were also established for
each MQM. For instance, target
and tolerance values were set to
1 and 0.75, respectively, for all
MQMs whose values closer to 1
are the better.

Evaluation design: the evaluation requesters
attached to the MQEP a set
of metamodel artifacts and
an association table between
these artifacts and each MQM
(including its ID2) to fully
support evaluators’ tasks (see
Table 2). A brief description of
each supporting artifact is pre-
sented next.

1. SoPaMM’s requirements and
design specification: a com-
prehensive guide about meta-
model concepts, semantics, and

modeling decisions under the
analysis and design viewpoints;

2. SoPaMM implementation in an
Ecore3 format file;

3. SoPaMM’s user documenta-
tion: a detailed description of
SoPaMM’s use cases to manage
software pattern catalogues;

4. SoPaMM’s version history:
this document describes the
commonalities and differences
between the three existing ver-
sions of SoPaMM;

5. SoPaMM-based patterns cata-
logues: one catalogue supports
the certification of electronic
health record systems [2, 4];
another represents behavior-
driven requirements of IoT
systems, and two catalogues
separately describe general
functionalities and behaviors for
user authentication and registra-
tion. The SoPaMM’s developers
built all these catalogues, which
are useful for metamodel reus-
ability and adaptability;

6. The PABRE metamodel speci-
fication: the SoPaMM’s most
similar metamodel but focused
on software requirement pat-
terns. This artifact helps evalu-
ate the replacement of SoPaMM
by another metamodel with the
same purpose in the same appli-
cation domain.

Six participants with different expertise evaluated

SoPaMM. Referring to the evaluators as E1 to E6, their
profiles are as follows:

• E1 has ten or more years of expertise in software quality;
• E2 and E3 own ten or more years of software require-

ments expertise, being three in requirement patterns;
• E4 holds ten or more years of expertise in software qual-

ity, software requirements, and software metamodeling;
• E5 and E6 own practical experience in software engineer-

ing in general.2 ID consists of an abbreviated alphabetic code with the initial letter
in uppercase of the quality characteristic followed by two letters rep-
resenting the sub-characteristic and an ordinal number of the sequen-
tial order within a quality sub-characteristic. For instance, the UAp-2
represents the second measure of appropriateness recognizability
(Ap), which is sub-characteristic of Usability (U).

3 Ecore is the core metamodel of the Eclipse Modeling Framework
and describes models and runtime support for them. Available at
https:// wiki. eclip se. org/ Ecore.

https://wiki.eclipse.org/Ecore

110 Requirements Engineering (2023) 28:97–115

1 3

The execution of the SoPaMM evaluation was carried out
from September 23 to October 15, 2020. Due to the COVID-
19 pandemic, the evaluators were further assisted by two
explanatory videos: one video overviews MQuaRE, whereas
the other describes how to calculate a particular MQM and
consequently the respective quality sub-characteristic and
characteristic.

Thus, the SoPaMM’s evaluation kit included a detailed
textual evaluation plan enriched with evaluation support-
ing artifacts and two tutorial videos. Also, the evaluators
received a template report document for registering the
evaluation results.

After completing the metamodel evaluation, the partici-
pants also filled in a questionnaire that assessed their percep-
tion of MQuaRE and SoPaMM. As MQuaRE details are out
of this work’s scope, we emphasize here only the questions
about SoPaMM. Three questions in a five-point Likert scale
asked how much the SoPaMM metamodel could help write
requirement patterns and test patterns and generate high-
quality requirement specifications and test specifications.

6.2 Evaluation results

Table 3 summarizes SoPaMM’s evaluation results. The more
the quality characteristics’ and sub-characteristics’ grades
are closer to 1, the better.

In general, the SoPaMM metamodel was well-judged
regarding its quality characteristics and sub-characteristics.
Except for the Portability category, characteristics’ and sub-
characteristics’ grades were higher than 0.8.

Concerning the Conceptual compliance sub-character-
istic, the evaluators concluded that all SoPaMM’s founda-
tions are easily identified through the conceptual foundation
measure (CCc-1): OMG’s MOF (Metamodel Object Facil-
ity) and SPMS (Structured Patterns Metamodel Standard),
and the BDD (Behavior-Driven Development) methodology.
The participants also traced each metamodel concept back to
its conceptual foundation (CCc-2), and the result was very
satisfactory again (0.9). A caveat should be made regarding
the variation of the measurement value of CCc-2. The evalu-
ator E3 was the only one that assigned a lower grade (0.69)
because in his opinion, the SoPaMM’s specification causes
misunderstandings about what a metamodel concept is.

The evaluators assigned high scores for measures con-
cerning conceptual completeness, correctness and appropri-
ateness (1.0, 0.99, and 1.0, respectively). These scores indi-
cate that SoPaMM’s supporting documentation models all of
SoPaMM’s requirements, and less than 1% of the concepts
modeled presents modeling mistakes (revealed by the evalu-
ator E3). Despite that, all SoPaMM’s concepts, as described
in the supporting documentation, allow achieving specific

Table 3 SoPaMM’s quality
evaluation results

Characteristic Grade Sub-characteristic Grade MQM Value

Compliance 0.95 Conceptual compliance 0.95 CCc-1 1.00
CCc-2 0.90

Conceptual suitability 1.00 Conceptual completeness 1.00 CCp-1 1.00
Conceptual correctness 0.99 CCr-1 0.99
Conceptual appropriateness 1.00 CAp-1 1.00

CAp-2 1.00
Usability 0.99 Appropriateness recognizability 0.99 UAp-1 1.00

UAp-2 0.98
UAp-3 1.00
UAp-4 0.98

Learnability 0.98 ULe-1 0.98
Maintainability 0.91 Modularity 0.94 MMo-1 1.00

MMo-2 0.88
Reusability 0.96 MRe-1 0.96
Modifiability 0.84 MMd-1 0.71

MMd-2 0.98
MMd-3 0.93
MMd-4 0.77
MMd-5 0.80

Portability 0.86 Adaptability 1.00 PAd-1 1.00
Replaceability 0.72 PRe-1 1.00

PRe-2 0.78
PRe-3 0.37

111Requirements Engineering (2023) 28:97–115

1 3

usage objectives defined by the evaluation requesters (e.g.,
creating a software pattern catalogue).

Regarding the Usability measures, evaluators agreed that
users might easily recognize that SoPaMM is appropriate for
their needs (UAp-1 to 4). Besides, they also concluded that
SoPaMM might be quickly learned for a given context of use
(ULe-1). The corresponding measurement values showed a
very low variation among the six evaluators, similar to the
Conceptual suitability measures.

From the Maintainability viewpoint, the participants
judged that changes on SoPaMM’s concepts have minimal
impact on other concepts (MMo-1 and 2). Further, they
concluded that SoPaMM’s usage scenarios, present in its
specifications, can be reused in multiple application domains
(MRe-1). However, evaluations deferred regarding the
degree to which SoPaMM can be effectively and efficiently
modified without introducing inconsistencies or degrading
its quality (MMd-1 to 5). In particular, the conceptual stabil-
ity measure (MMd-1) is the only one whose value (0.71) is
less than the tolerance value (0.75).

Finally, Portability reached the lowest grade (0.86), spe-
cifically influenced by the conceptual inclusiveness measure
(PRe-3 = 0.37). In MQuaRE, this measure partially analyzes
metamodel’s replaceability. Both this measure and meta-
model quality equivalence (PRe-2) presented a high con-
trast among evaluators’ judgments. On the other hand, the
participants concluded that SoPaMM is flexible enough to be
adapted in multiple application domains (PAd-1). Further-
more, SoPaMM is fully capable of replacing an equivalent
metamodel for the same purpose in the same application
domain (PRe-1).

Regarding the three questionnaire items about SoPaMM,
the evaluators were unanimous that it certainly helps specify
requirement and test patterns and the production of require-
ment and test specifications. Observe that this result is solely
based on the participants’ experience with the SoPaMM’s
evaluation process. We are also aware that the small number
of evaluators does not convey statistical significance.

6.3 Discussion

Evaluation results suggest that the SoPaMM has a good
quality regarding Compliance, Conceptual suitability, Usa-
bility, Maintainability, and Portability. Evaluators’ com-
ments reported positive and negative aspects about SoPaMM
and MQuaRE.

The evaluators E1, E2, and E5 concluded that “SoPaMM
satisfactorily meets quality requirements.” E3 assigned
a lower grade to the Compliance measures because in his
opinion, “the SoPaMM documentation is not clear regard-
ing what a metamodel concept is.” Moreover, E3 and E4
suggested that a software tool would facilitate metamodel’s
evaluation using MQuaRE. They agreed that managing

multiple documents without tool support is cumbersome
(e.g., evaluation plan, metamodel specifications, pattern
catalogues, and evaluation report).

Analyzing evaluators’ observations, we believe that the
evaluation support artifacts (e.g., requirements and design
specification) and the explanation of how to calculate each
MQM contributed positively to SoPaMM’s performance
regarding Compliance, Conceptual suitability, and Usabil-
ity. The variation between the respective values of measures
was very low (zero, in most cases), even though there is no
statistical evidence. E3 stated that “usability measures were
the easiest to calculate.”

Some Maintainability measures had that same variation
pattern, as did one Portability measure (MMo-1, MMo-2,
MRe-1, and PAd-1, in this order). In particular, the scores
of MRe-1 and PAd-1 (0.96 and 1.0, respectively) demon-
strate that the alignment between FRP and ATP described
in SoPaMM-based pattern catalogues can be easily reused
and adapted for different application domains.

Still concerning Maintainability, E3 and E4, however,
reported that Modifiability measures are challenging to
understand and calculate for those who are not the meta-
model developer (MMd-1 to 5). E4 did not feel comfortable
computing the MMd-3, MMd-4, and MMd-5 measures, so
he left them blank. Although E3 has assessed the SoPaMM’s
modifiability, he reported not feel confident about it, particu-
larly regarding MMd-4 and MMd-5.

As evaluation results shown in Table 3, all the partici-
pants agreed that Portability is troublesome to measure,
particularly PRe-2 and PRe-3. The evaluator E4 reported
that Portability is not relevant to metamodels. In his opinion,
“metamodels are considered Domain-Specific Languages
(DSL), i.e., they are inherently domain-specific. Hence,
the proposition of a metric that measures if the users must
recognize whether a metamodel contains concepts whose
purpose is understood correctly without prior training
is questionable. If the concepts hold by a metamodel are
domain-specific, only users related to that domain will prob-
ably understand the concepts with no training.”

Moreover, E4 advised not to use Replaceability as an
essential criterion. According to him, “if one metamodel
already exists, it makes sense to adapt it, but replace it with
a new one sounds not productive.” E4 also reinforced that the
MQuaRE’s quality evaluation model is comprehensive about
a metamodel’s characteristics. However, he is “not confident
that every single metamodel should exhibit all these quality
properties.” For this work, E4’s opinion is entirely relevant
because of his ten-year metamodeling expertise.

In brief, we consider applying an evaluation framework to
measure metamodel’s Compliance, Conceptual suitability,
among other quality characteristics, is not trivial. Usually,
there is an ecosystem of organizations involving standardi-
zation, certification, and evaluation in which the certifying

112 Requirements Engineering (2023) 28:97–115

1 3

organization provides training courses on quality models,
for instance. Conversely, SoPaMM’s evaluation was the first
MQuaRE use case. Also, tutorial videos were the only train-
ing support the evaluators had. For these reasons, we believe
that MQuaRE may have negatively influenced the results,
specifically regarding Maintainability and Portability. How-
ever, we reinforce that SoPaMM’s quality properties’ grades
were higher than 0.85, and they could be better if a compre-
hensive training course preceded the evaluation.

6.4 Threats to validity

The validity of experiment results depends on experiment
settings, and it can be of four types [47]: internal, exter-
nal, construction, and conclusion. We discuss the threats to
validity managed and mitigated, as follows.

Conclusion validity refers to the statistical relation
between the initial data and the outcomes. The number of
participants might have negatively affected the SoPaMM’s
quality analysis. However, to minimize this threat, we
selected evaluators with multiple specialties varying from
general to specific software engineering knowledge, such
as requirements engineering, software quality, and meta-
modeling. Also, most MQMs values’ low variation conveys
more reliability to conclusions (except for the Modifiability
and Replaceability measures). Furthermore, the evaluation
process’s implementation was as standard as possible; all
subjects received the same treatment (e.g., the evaluation kit)
and could be helped if demanded. Only the participants E5
and E6 requested further support with minimal intervention
of the evaluation requesters.

Concerning internal validity, it refers to factors affecting
the outcomes, not being independent variables. The deci-
sion for not using a control group was counterbalanced with
the group heterogeneity. Besides, the evaluators E5 and E6
experienced difficulties in understanding MQuaRE. They
reported frequent access to the complete MQuaRE docu-
mentation to obtain further details, mostly about interpret-
ing some MQMs (e.g., Portability-related) and the PABRE
metamodel. Despite tailoring measures borrowed from ISO/
IEC standards for metamodel quality purposes, this miss-
ing information in the evaluation plan may have hampered
the SoPaMM’s portability results. Furthermore, impacted
mainly by the COVID-19 outbreak, the participants did not
receive extensive training but only the evaluation plan, sup-
porting artifacts, tutorial videos, and an evaluation report.

Construct validity indicates the extent to which measures
accurately reflect the theoretical concepts intended to meas-
ure. From the need for a comprehensive metamodel quality
evaluation framework, MQuaRE arose after the SoPaMM
proposal. Therefore, we understand that the metamodel
quality perspective of SoPaMM’s creators may have influ-
enced the definition of both the MQuaRE’s quality model

and measures. However, to mitigate a likely bias, MQuaRE
compiles related work on metamodel quality [27, 28, 38, 43]
and international standards for software quality, such as ISO/
IEC 25010 [24] and ISO/IEC 25023 [25].

External validity concerns the generalization of research
findings outside the experiment setting. Once again, we
selected a heterogeneous group as a representative popula-
tion. On the other hand, we know both novice evaluators in
MQuaRE and supporting tutorial videos do not represent
the industrial practice that usually includes highly trained
evaluators.

7 Conclusions and future work

Influenced by well-accepted agile practices and international
standards for metamodeling, the Software Pattern Meta-
Model (SoPaMM) provides a general structure for software
pattern specification. The novelty is that SoPaMM links
requirements to testing through requirement patterns and
test patterns as a reuse approach of higher-quality software
artifacts produced in these phases. Furthermore, given that
metamodels’ quality may affect the software specifications’
quality, we also estimate multiple quality facets of SoPaMM
through an evaluation framework called Metamodel Quality
Requirements and Evaluation (MQuaRE).

The following are lessons learned with the SoPaMM’s
development and quality evaluation:

1. Our requirements and testing alignment approach
through patterns provide reusable, testable, and trace-
able software artifacts, which should reduce a project’s
development time and cost.

2. Most of SoPaMM’s quality properties were well-judged,
namely conceptual compliance, completeness, correct-
ness, appropriateness, and learnability, appropriateness
recognizability, reusability, and adaptability.

3. Although the quality in use evaluation was not per-
formed, the participants experienced and approved the
alignment of requirements and testing through pattern
catalogues built upon SoPaMM. High scores of SoPa-
MM’s reusability and adaptability suggest evaluators’
approval.

4. The evaluation kit might bring additional details about
quality measures and the PABRE metamodel to support
evaluators’ tasks thoroughly. The MQuaRE documenta-
tion should be revised as well for the same purpose.

5. Maybe not all metamodels should exhibit all quality
properties present in MQuaRE, as noted by the expert
subject.

6. MQuaRE-aware tool support would undoubtedly be
helpful.

113Requirements Engineering (2023) 28:97–115

1 3

As future work, we plan to enhance SoPaMM’s capabilities
by bridging nonfunctional requirement patterns (NFRP) to
test patterns (TP). New types of NFRP and TP can be cre-
ated and aligned, e.g., performance NFRP and effort TP or
reliability NFRP and fault recovery TP. Despite being widely
investigated in the literature [1, 9, 41, 48], NFRP is often
restricted to requirements engineering and not other software
life cycle phases as we have been studied.

Besides, we aim to extend our TMEd tool with new func-
tionalities, such as creating a public repository of SoPaMM-
based pattern catalogues and manual search for patterns
across catalogues. The goal is further widespread our pro-
posal of behavior-driven functional requirement patterns. In
the long term, TMEd will also empower professionals with
software patterns mining features, including automatic dis-
covery and recommendation.

The catalogues generated by TMEd are input for another
tool we have been working on, called behavior-DRivEn
Application Model generator (DREAM). From a SoPaMM-
based pattern catalogue, DREAM allows the automatic
generation of requirements and test case specifications with
traceability support. This initiative will enable us to dem-
onstrate the benefits of using requirement patterns aligned
to test patterns in the software industry projects. We are
currently working on validating the pattern catalogue for
Brazilian electronic health record systems certification with
experts. All these efforts have origins from a research agenda
on requirement patterns we published elsewhere [6].

Finally, we learned that a software tool could better assist
MQuaRE users’ tasks. A wizard would guide evaluation
requesters toward a more effective metamodel evaluation
plan. Similarly, it would also instruct evaluators on which
metamodel artifacts are applicable, how to compute each
measure, and the evaluation report’s generation. This meta-
model evaluation supporting tool will be under development
soon.

Acknowledgements The work described in this manuscript has not
been published before. It is not also under consideration for publica-
tion anywhere else. Besides, its publication has been approved by all
co-authors.

Author Contributions Taciana Novo Kudo, Renato de Freitas Bulcão-
Neto were involved in conceptualization and writing—original draft
preparation. Taciana Novo Kudo, Renato de Freitas Bulcão-Neto, Val-
demar Vicente Graciano Neto contributed to methodology. All authors
were involved in results analysis and threats to validity. Renato de Frei-
tas Bulcão-Neto, Auri Marcelo Rizzo Vincenzi contributed to writ-
ing—review and editing. Taciana Novo Kudo was involved in funding
acquisition. Auri Marcelo Rizzo Vincenzi contributed to supervision.

Funding Partial financial support was received from the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior−Brazil (CAPES)−
Finance Code 001.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Amorndettawin M, Senivongse T (2019) Non-functional require-
ment patterns for agile software development. In: Proceedings of
the 2019 3rd International Conference on Software and E-Busi-
ness, ICSEB 2019, pp 66–74. Association for Computing Machin-
ery, New York, NY, USA. https:// doi. org/ 10. 1145/ 33745 49. 33745
61

 2. Taciana N. Kudo, Renato F. Bulcão-Neto, Auri M.R. Vincenzi
(2019) A Conceptual Metamodel to Bridging Requirement Pat-
terns to Test Patterns. In: Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, SBES 2019, pp. 155–160.
ACM, Salvador, Brazil. https:// doi. org/ 10. 1145/ 33507 68. 33513 00

 3. Taciana N. Kudo, Renato F. Bulcão-Neto, Auri M.R. Vincenzi
(2020) Toward a Metamodel Quality Evaluation Framework:
Requirements, Model, Measures, and Process. In: Proceedings
of the XXXIV Brazilian Symposium on Software Engineering,
SBES 2020, pp. 102–107. ACM, Natal,Brazil. https:// doi. org/ 10.
1145/ 34223 92. 34224 61

 4. Taciana N. Kudo, Renato F. Bulcão-Neto, Auri M.R. Vincenzi
(2020) Uma Ferramenta para Construção de Catálogos de Padrões
de Requisitos com Comportamento. In: Workshop em Engenharia
de Requisitos, WER 2020, pp. 1–14. Editora PUC-Rio, São José
dos Campos, Brazil. http:// wer. inf. pucrio. br/ WERpa pers/ artig os/
artig os_ WER20/ 12_ WER_ 2020_ paper_ 16. pdf

 5. Taciana N. Kudo, Renato F. Bulcão-Neto, Auri M.R. Vin-
cenzi (2020) Metamodel Quality Requirements and Evaluation
(MQuaRE). CoRR abs/2008.09459. arxiv. org/ abs/ 2008. 09459

 6. Taciana N. Kudo, Renato F. Bulcão-Neto, Auri M.R. Vincenzi
(2020) Requirement patterns: a tertiary study and a research
agenda. IET Softw 14(1):18–26. https:// doi. org/ 10. 1049/ iet- sen.
2019. 0016

 7. Taciana N. Kudo, Renato F. Bulcão-Neto, Auri M.R. Vincenzi,
Alessandra A. Macedo (2019) A revisited systematic literature
mapping on the support of requirement patterns for the software
development life cycle. J. Softw. Eng. Res. Dev. 7:9. https:// doi.
org/ 10. 5753/ jserd. 2019. 458

 8. Baudry B, Nebut C, Traon YL (2007) Model-driven engineering
for requirements analysis. In: 11th IEEE international enterprise
distributed object computing conference (EDOC 2007), p 459

 9. Beckers K, Côté I, Goeke L (2014) A catalog of security require-
ments patterns for the domain of cloud computing systems. In:
Proceedings of the ACM symposium on applied computing, pp
337–342. ACM, Gyeongju, Republic of Korea

 10. Bjarnason E, Borg M (2017) Aligning requirements and testing:
working together toward the same goal. IEEE Softw 34(1):20–23.
https:// doi. org/ 10. 1109/ MS. 2017. 14

 11. Chelimsky D, Astels D, Helmkamp B, North D, Dennis Z, Hel-
lesoy A (2010) The RSpec book: behaviour driven development
with Rspec, cucumber, and friends, 1st edn. Pragmatic Bookshelf,
Raleigh, NC

 12. Cheng BHC, Atlee JM (2009) Current and future research direc-
tions in requirements engineering. In: Lyytinen K, Loucopoulos
P, Mylopoulos J, Robinson B (eds) Design requirements engineer-
ing: a ten-year perspective. Springer, Berlin, pp 11–43

 13. Chernak Y (2012) Requirements reuse: the state of the practice.
In: 2012 IEEE international conference on software science.
Technology and Engineering, SWSTE 2012, Herzlia, Israel, June

https://doi.org/10.1145/3374549.3374561
https://doi.org/10.1145/3374549.3374561
https://doi.org/10.1145/3350768.3351300
https://doi.org/doi.org/10.1145/3422392.3422461
https://doi.org/doi.org/10.1145/3422392.3422461
http://wer.inf.pucrio.br/WERpapers/artigos/artigos_WER20/12_WER_2020_paper_16.pdf
http://wer.inf.pucrio.br/WERpapers/artigos/artigos_WER20/12_WER_2020_paper_16.pdf
https://arxiv.org/abs/2008.09459
https://doi.org/10.1049/iet-sen.2019.0016
https://doi.org/10.1049/iet-sen.2019.0016
https://doi.org/10.5753/jserd.2019.458
https://doi.org/10.5753/jserd.2019.458
https://doi.org/10.1109/MS.2017.14

114 Requirements Engineering (2023) 28:97–115

1 3

12–13, 2012. IEEE Computer Society, Los Alamitos, CA, USA,
pp 46–53

 14. Costal D, Franch X, López L, Palomares C, Quer C (2019) On the
use of requirement patterns to analyse request for proposal docu-
ments. In: Laender AHF, Pernici B, Lim E, de Oliveira JPM (eds)
conceptual modeling—38th international conference, ER 2019,
Salvador, Brazil, November 4–7, 2019, Proceedings. Lecture
Notes in Computer Science, vol. 11788, pp. 549–557. Springer .
https:// doi. org/ 10. 1007/ 978-3- 030- 33223-5_ 45

 15. Ebert C, Ray R (2021) Test-driven requirements engineering.
IEEE Softw 38(1):16–24. https:// doi. org/ 10. 1109/ MS. 2020. 30298
11

 16. Franch X (2015) Software requirements patterns: a state of the art
and the practice. In: Proceedings of the 37th international confer-
ence on software engineering, vol 2, ICSE’15, pp 943–944. IEEE
Press, Piscataway

 17. Franch X, Palomares C, Quer C (2020) Industrial practices on
requirements reuse: an interview-based study. In: Madhavji NH,
Pasquale L, Ferrari A, Gnesi S (eds) Requirements engineering:
foundation for software quality—26th international working con-
ference, REFSQ 2020, Pisa, Italy, March 24–27, 2020, Proceed-
ings [REFSQ 2020 was postponed], Lecture Notes in Computer
Science, vol 12045, pp 78–94. Springer. https:// doi. org/ 10. 1007/
978-3- 030- 44429-7_6

 18. Franch X, Palomares C, Quer C, Renault S, De Lazzer F (2010)
A metamodel for software requirement patterns. In: Wieringa R,
Persson A (eds) Requirements engineering: foundation for soft-
ware quality. Springer, Berlin, pp 85–90

 19. Fricker S, Grau R, Zwingli A (2015) Requirements engineering:
best practice, pp 25–46. Springer, Berlin

 20. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design pat-
terns: elements of reusable object-oriented software. Addison-
Wesley Longman, Boston

 21. Haskins C (2003) Using patterns to share best results—a proposal
to codify the Sebok. INCOSE Int Symp 13(1):15–23

 22. Irshad M, Petersen K, Poulding S (2018) A systematic literature
review of software requirements reuse approaches. Inf Softw
Technol 93(C):223–245

 23. ISO/IEC: ISO/IEC 9126-1:2001 Software engineering—product
quality—Part 1: quality model. ISO/IEC 9126-1:2001 1:1–25
(2001)

 24. ISO/IEC: ISO/IEC 25000:2014 Systems and software engineer-
ing—systems and software Quality Requirements and Evaluation
(SQuaRE)—Guide to SQuaRE. ISO/IEC 25000:2014 2:1–27
(2014)

 25. ISO/IEC: ISO/IEC 25023:2016 systems and software engineer-
ing—systems and software quality requirements and evaluation
(SQuaRE)—measurement of system and software product quality.
ISO/IEC 25023:2016 1:1–45 (2016)

 26. Leotta M, Clerissi D, Ricca F, Spadaro C (2013) Improving test
suites maintainability with the page object pattern: an industrial
case study. In: ICST workshops, pp 108–113. IEEE Computer
Society, Washington, DC

 27. Ma H, Shao W, Zhang L, Ma Z, Jiang Y (2004) Applying OO
metrics to assess UML meta-models. In: Baar T, Strohmeier A,
Moreira A, Mellor SJ (eds) UML 2004—the unified modeling lan-
guage. Modeling languages and applications, pp 12–26. Springer,
Berlin

 28. Ma Z, He X, Liu C (2013) Assessing the quality of metamodels.
Front Comput Sci 7(4):558

 29. Macasaet RJ, Noguera M, Rodríguez ML, Garrido JL, Supakkul S,
Chung L (2019) Micro-business requirements patterns in practice:
remote communities in developing nations. J Univ Comput Sci
25(7):764–787. http:// www. jucs. org/ jucs_ 25_7/ micro_ busin ess_
requi remen ts_ patte rns

 30. Meszaros G (2006) XUnit test patterns: refactoring test code.
Prentice Hall, Upper Saddle River

 31. Moreira RMLM, Paiva ACR (2014) A GUI modeling DSL for
pattern-based GUI testing—PARADIGM. In: ENASE 2014—
Proceedings of the 9th international conference on evaluation
of novel approaches to software engineering, Lisbon, Portugal,
28–30 April, 2014, pp 126–135. IEEE, Lisbon, Portugal

 32. Oliveira G, Marczak S, Moralles C (2019) How to evaluate BDD
scenarios’ quality? In: do Carmo Machado I, Souza R, Maciel
RSP, Sant’Anna C (eds) Proceedings of the XXXIII Brazilian
symposium on software engineering, SBES 2019, Salvador, Bra-
zil, September 23–27, pp 481–490. ACM. https:// doi. org/ 10. 1145/
33507 68. 33513 01

 33. OMG: Meta object facility (mof) specification, version 1.4. Object
Management Group, Inc. (2002)

 34. OMG: Structured patterns metamodel standard. OMG—Object
Management Group (2017)

 35. Palomares C, Quer C, Franch X (2011) Pabre-man: management
of a requirement patterns catalogue. In: RE 2011, 19th IEEE
international requirements engineering conference, Trento, Italy,
August 29 2011–September 2, 2011, pp 341–342. IEEE Computer
Society. https:// doi. org/ 10. 1109/ RE. 2011. 60516 66

 36. Palomares C, Quer C, Franch X, Renault S, Guerlain C (2013)
A catalogue of functional software requirement patterns for the
domain of content management systems. In: Proceedings of the
28th annual ACM symposium on applied computing, SAC ’13,
pp 1260–1265. ACM, New York

 37. Rising L (1999) Patterns: a way to reuse expertise. IEEE Commun
Mag 37(4):34–36

 38. Rocco J, Di Ruscio D, Iovino L, Pierantonio A (2014) Mining
metrics for understanding metamodel characteristics. In: Proceed-
ings of the 6th international workshop on modeling in software
engineering (MiSE 2014), pp 55–60. ACM, New York

 39. Rook P (1986) Controlling software projects. Softw Eng J 1:7
 40. Smart JF (2014) BDD in action: behavior-driven development for

the whole software lifecycle, 1st edn. Manning Publications
 41. de Souza Cunha H, do Prado Leite JCS, Duboc L, Werneck V

(2013) The challenges of representing transparency as patterns.
In: Third IEEE International Workshop on Requirements Patterns,
RePa 2013, Rio de Janeiro, Brazil, July 16, 2013, pp 25–30. IEEE
Computer Society . https:// doi. org/ 10. 1109/ RePa. 2013. 66026 68

 42. Stocco A, Leotta M, Ricca F, Tonella P (2015) Why creating web
page objects manually if it can be done automatically? In: Pro-
ceedings of the 10th international workshop on automation of
software test, AST ’15, pp 70–74. IEEE Press, Piscataway

 43. Strahonja V (2007) The evaluation criteria of workflow metamod-
els. In: 29th international conference on information technology
interfaces, pp 553–558. IEEE, New York

 44. Tockey S (2015) Insanity, hiring, and the software industry. Com-
puter 48:96–101

 45. Videira C, da Silva AR (2005) Patterns and metamodel for a
natural-language-based requirements specification language. In:
Belo O, Eder J, Cunha JF, Pastor O (eds) The 17th conference on
advanced information systems engineering (CAiSE ’05), Porto,
Portugal, 13–17 June, 2005, CAiSE Forum, Short Paper Proceed-
ings, CEUR Workshop Proceedings, vol 161. CEUR-WS.org.
http:// ceur- ws. org/ Vol- 161/ FORUM_ 31. pdf

 46. Withall S (2007) Software requirement patterns. Best practices.
Microsoft Press, Redmond

 47. Wohlin C, Runeson P, Hst M, Ohlsson MC, Regnell B, Wessln A
(2012) Experimentation in software engineering. Springer, Berlin

 48. Xuan X, Wang Y, Li S (2014) Privacy requirements patterns for
mobile operating systems. In: Zhao L, do Prado Leite JCS, Supa-
kkul S, Chung L, Wang Y (eds) 4th IEEE international work-
shop on requirements patterns, RePa 2014, Karlskrona, Sweden,

https://doi.org/10.1007/978-3-030-33223-5_45
https://doi.org/10.1109/MS.2020.3029811
https://doi.org/10.1109/MS.2020.3029811
https://doi.org/10.1007/978-3-030-44429-7_6
https://doi.org/10.1007/978-3-030-44429-7_6
http://www.jucs.org/jucs_25_7/micro_business_requirements_patterns
http://www.jucs.org/jucs_25_7/micro_business_requirements_patterns
https://doi.org/10.1145/3350768.3351301
https://doi.org/10.1145/3350768.3351301
https://doi.org/10.1109/RE.2011.6051666
https://doi.org/10.1109/RePa.2013.6602668
http://ceur-ws.org/Vol-161/FORUM_31.pdf

115Requirements Engineering (2023) 28:97–115

1 3

August 26, 2014, pp. 39–42. IEEE Computer Society. https:// doi.
org/ 10. 1109/ RePa. 2014. 68948 42

 49. Ya’u B, Nordin A, Salleh N (2016) Software requirements pat-
terns and meta model: a strategy for enhancing requirements reuse
(rr). In: 2016 6th international conference on information and

communication technology for the muslim world, pp 188–193.
ICT4M, Jakarta, Indonesia

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/RePa.2014.6894842
https://doi.org/10.1109/RePa.2014.6894842

	Aligning requirements and testing through metamodeling and patterns: design and evaluation
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Behavior-driven development (BDD)
	3.2 The MQuaRE framework

	4 The SoPaMM metamodel
	5 How to use SoPaMM
	5.1 A method for developing SoPaMM-based pattern catalogues
	5.2 SoPaMM instantiation

	6 Quality evaluation
	6.1 Evaluation planning and design
	6.2 Evaluation results
	6.3 Discussion
	6.4 Threats to validity

	7 Conclusions and future work
	Acknowledgements
	References

