
Vol.:(0123456789)1 3

Requirements Engineering (2022) 27:405–427 
https://doi.org/10.1007/s00766-022-00390-8

ORIGINAL ARTICLE

Testing software’s changing features with environment‑driven 
abstraction identification

Zedong Peng1 · Prachi Rathod1 · Nan Niu1   · Tanmay Bhowmik2 · Hui Liu3 · Lin Shi4 · Zhi Jin5

Received: 20 January 2022 / Accepted: 6 September 2022 / Published online: 20 September 2022 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Abstractions are significant domain terms that have assisted in requirements elicitation and modeling. To extend the assistance 
toward requirements validation, we present in this paper an automated approach to identifying the abstractions for supporting 
requirements-based testing. We select relevant Wikipedia pages to serve as a domain corpus that is independent from any 
specific software system. We further define five novel patterns based on part-of-speech tagging and dependency parsing, and 
frame our candidate abstractions in the form of <key, value> pairs for better testability, where the “key” helps locate “what 
to test”, and the “value” helps guide “how to test it” by feeding in concrete data. We evaluate our approach with six software 
systems in two application domains: Electronic health records and Web conferencing. The results show that our abstractions 
are more accurate than those generated by a state-of-the-art technique. While the initial findings indicate our abstractions’ 
capabilities of revealing bugs and matching the environmental assumptions created manually, we articulate a new way to 
perform requirements-based testing by focusing on a software system’s changing features. Specifically, we hypothesize that 
the same feature would behave differently under a pair of opposing environmental conditions and assess our abstractions’ 
applicability to this new form of feature testing.

Keywords  Abstractions · Natural language · Environmental assumptions and conditions · Requirements-based testing

1  Introduction

In requirements engineering (RE), an abstraction refers to a 
term that has a particular significance in a given domain [1]. 
For example, “radar” is recognized as an abstraction in the 
air traffic control problem domain [2], and so is “antenna” 
in the radio frequency identification (RFID) application 
domain [3]. In order to reduce the requirements engineer’s 
effort, researchers have developed methods to automatically 
identify the abstractions from the natural language (NL) doc-
uments. While the seminal work of AbstFinder searches for 
patterns of byte sequences [4], other researchers have located 
the abstraction candidates by exploiting natural language 
processing (NLP) techniques (e.g., corpus-based frequency 
profiling and part-of-speech tagging) [2, 3, 5–7].

Current support is mainly for early phase RE where the 
focus is on understanding the problem domain before formu-
lation of the initial requirements [8]. For instance, Sawyer 
et al. [2] showed in an air traffic control case study that the 
abstractions extracted from a set of ethnographic fieldnotes 
by NLP could match the elements of a class diagram at a 
75% recall and 12% precision level. Clearly, the relevance 
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of such NLP results must be vetted by the requirements 
engineer.

Indeed, Ryan [9] argued that NLP should play only a 
partial role in requirements validation, i.e., demonstrating 
convincingly a software system’s conformance to stake-
holder needs, because validating requirements must remain 
an informal, social process. Ryan [9] further pointed out that 
an intrinsic difficulty lies in the identification of assumptions 
that reflect the shared, common sense knowledge of people 
familiar with the social and technical contexts within which 
the software system operates.

Significant to RE are the environmental assumptions 
[10], i.e., the conditions over the phenomena of the physi-
cal world that one accepts as true irrespective of the soft-
ware to be built [11]. In this paper, we use assertion [11] 
and assumption [12] interchangeably to refer to a statement 
indicating a property over the phenomena in the software’s 
operational context that is accepted as true by the develop-
ers [13]. Many software problems originate in missing or 
flawed environmental assumptions. Notably, the assumption 
made about the maximum horizontal velocity did not hold 
for Ariane 5, contributing to the rocket launch failure [14]. 
Making the assumption statements explicit is therefore key 
to understanding the informal, social aspects of requirements 
validation.

A recent empirical study by Bhowmik et al. [15] with 
114 developers showed the positive impact of environmental 
assumptions on requirements-based testing. One concrete 
result highlighted the assumption: “a doctor’s appointment 
shall be scheduled only for a future timeslot”. This state-
ment generally holds independent of any specific software 
system. As a result, it helped to uncover a defect in a soft-
ware application where a patient was able to make a doc-
tor’s appointment for a past date and time [15]. Despite the 
positive impact, Bhowmik et al. [15] reported that manually 
formulating complete and correct environmental assump-
tions from scratch is challenging.

Using NLP to automatically produce assumption state-
ments, according to Ryan [9] and Sawyer et  al. [2], is 
infeasible; however, narrow domain understanding in the 
form of abstractions has been shown to be realistic [1–4]. 
Our objective in this paper is to automatically identify the 
abstractions that are both indicative of important domain 
phenomena and amenable to requirements-based testing. 
To that end, we derive a corpus by selecting pages from 
Wikipedia, an exceptional repository codifying our shared 
knowledge about specific and connected topics. We then 
define a novel set of NLP patterns to extract and rank candi-
date abstractions. We show the effectiveness of our approach 
by comparing its results with abstractions identified from 
the state-of-the-art method [1]. We also demonstrate our 
approach’s usefulness by relating the resulting abstractions 
to the environmental assumptions created manually [12, 15].

In our previous work [16], we derived four desiderata 
based on Jackson’s conceptualization [11] for abstraction 
identification in the context of requirements-based testing: 
machine independent, requirements related, directly testable, 
and bug revealing. Our interpretation of a bug hinged on the 
failure of requirements fulfillment [16]. However, our analy-
sis of some real-world bugs showed that a non-negligible 
distance often existed between testing a software feature and 
fulfilling a stakeholder’s need. Thus, in this extension of our 
previous paper, we address such a distance by refining the 
notion of bug revealing, which in turn shapes the operation-
alization of testability. In particular, we depict a new form of 
acceptance testing when a changing feature is considered to 
be deployed, where a feature is an increment of functional-
ity usually with a coherent purpose1. Rather than testing the 
software feature in a single environment to show the failure 
of requirements fulfillment [16], the extension of this paper 
shifts the requirements-based testing’s focus toward testing 
the feature in a pair of opposing environmental conditions. 
The testing expectation (or oracle [17]) is that the feature 
would behave differently under these contrasting condi-
tions, effectively tackling the distance between observing 
the execution of a feature and validating the satisfaction of 
a requirement.

The main contribution of our work is the abstraction iden-
tification that goes beyond early phase RE and offers new 
support for requirements-based testing. Our evaluation with 
six software applications in two different domains shows 
the effectiveness of our approach. In what follows, we pre-
sent background information in Sect. 2. We then clarify the 
influence of environmental assumptions on requirements-
based testing in Sect. 3. Section 4 details our NLP tool 
chain, Sect. 5 describes the empirical evaluations for the 
effectiveness and relevance of identified abstractions, Sect. 6 
discusses the extended way of testing a software’s chang-
ing features with support of abstractions, and finally, Sect. 7 
concludes the paper.

2 � Background and related work

2.1 � Abstraction identification in requirements 
engineering

Abstractions are important domain concepts which the 
human analyst needs to identify in order to understand the 
problem domain as well as the constraints on the range 
of possible solutions [2]. To support the elicitation of the 
initial requirements, Goldin and Berry [4] developed the 

1  http://​www.​pamel​azave.​com/​faq.​html (last accessed on 2022/09/14 
12:07:09).

http://www.pamelazave.com/faq.html
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AbstFinder tool based on the idea that important abstractions 
would recur frequently as repeated words within the target 
NL document. AbstFinder thus searches for co-occurring 
byte sequences within pairs of sentences using a series of 
circular shifts and returns a ranked list of frequently occur-
ring byte sequences that a human analyst must recognize as 
parts of words and phrases.

To be successful in supporting early phase RE, the auto-
matic identification of abstractions must achieve a level of 
completeness at least as good as that achieved by a human 
analyst. High recall values are often obtained at the cost 
of low levels of precision [18–20]. As noted by Sawyer 
et al. [2], when a complex problem is tackled, a precision 
of 25% or higher represents good abstraction identification 
performance.

Sawyer et al.’s air traffic control case study confirmed the 
practically achievable precision level, where a NLP tool-
set—word frequency and collocation, part-of-speech (PoS) 
tagging, and shallow semantic analysis—was used to extract 
abstractions from an aggregated set of ethnographic field-
notes comprising about 44,000 words [2]. The technique 
achieved a 21% precision, showing the practical perfor-
mance when processing a sizable volume of text.

Gacitua et al. [1, 3] used corpus-based frequency pro-
filing to identify single-word abstractions. Given a domain 
document D and a normative corpus C, frequency profiling 
computes a term t’s log-likelihood value2 LL

t
 according to 

t’s observed values in D and its expected values in C. The 
greater the LL

t
 value is, the more significant t is in D than 

in C, and hence the more likely t is an abstraction. Because 
over 85% domain-specific terms are multiword units [21], 
Gacitua et al. also recognized multiword abstractions via 
syntactic patterns based on PoS tagging, namely adjectives 
and nouns, and adverbs and verbs. In an experiment with 
the full text of a book containing 156,028 words, Gacitua 
et al.’s method achieved a 32% recall and a 32% precision, 
outperforming AbstFinder’s 7% recall and 7% precision [1].

It should be pointed out that Gacitua et al. [1, 3] used 
AbstFinder as a one-shot tool, which was not the intended 
use as conceived by Goldin and Berry [4]. AbstFinder is 
aimed at helping a human analyst to identify the abstraction 
in an interactive and iterative manner. After all, it finds only 
fragments of words that only an intelligent human can rec-
ognize as portions of relevant words and phrases. After each 
use of AbstFinder on the input that is left, the input is to be 
strained to remove from it the text related to the abstractions 
identified in the last use of AbstFinder. Then, AbstFinder 
is applied to the strained input [4]. We therefore compare 
our approach introduced in this paper to the abstraction 

identification mechanism defined by Gacitua et al. [1], as 
both are intended to be used in a one-shot manner.

In summary, abstraction identification can be thought of 
as where the expertise of domain expert and requirements 
engineer meet [3]. Since domain expertise is often avail-
able to the requirements engineer as NL documents (e.g., 
marketing reports, feature-release notes, etc.), abstractions 
identified from the relevant documents help encapsulate the 
rich contextual information needed for the framing of the 
requirements. Framing the requirements, as Jackson [11] 
pointed out, must consider explicitly the phenomena of the 
environment in which the software operates.

2.2 � Environmental assumptions

An assumption is defined as: “a thing that is accepted as true 
or as certain to happen, without proof”3. In software devel-
opment, an environmental assumption is a statement about 
the software system’s operational context that is accepted 
as true by the developers [13]. For example, the statement: 
“a train is moving if and only if its speed is non-null” [12] 
is an assumption made about the physical world, whereas 
the statement: “the operator will not enter data faster than 
X words per minute” [22] is an assumption made about the 
user interactions with the software-intensive system.

Many software problems originate in missing, inadequate, 
inaccurate, or changing environmental assumptions [12]. 
Besides the aforementioned Ariane 5 launch failure [14], 
other examples include the false assumption regarding the 
stopping distance when heavier New York subway trains 
were introduced [23], as well as the inadequate assumption 
about the Therac-25 radiation therapy machine’s protective 
circuits and mechanical interlocks [22]. All these flawed 
assumptions resulted in accidents and in the Therac-25 case, 
even fatal accidents.

Diagnosing whether an existing assumption is incor-
rectly removed or retained in a software product line is 
addressed by Rahimi and her colleagues [24]. Their diagnos-
tic approach considers only the safety-related assumptions 
that are linked to the manually conducted Failure Mode, 
Effects and Criticality Analysis (FMECA) [25]. Rules are 
then defined to flag potential assumption errors for a new 
or changed product (e.g., a removed assumption that should 
have been maintained). Another source of variability is the 
location specificity of environmental assumptions pointed 
out by Alrajeh et  al. [26]. While in London “polluting 
vehicles are admitted in a Low Emission Zone (LEZ)”, the 
assumption does not hold everywhere, e.g., polluting vehi-
cles are not admitted in Brussels’s LEZ. As a result, the 

2  Mathematical definition is provided later in Eq. (6) of Sect. 5.2.
3  http://​www.​oxfor​ddict​ionar​ies.​com/​defin​ition/​engli​sh/​assum​ption 
(last accessed on 2022/09/14 12:07:09).

http://www.oxforddictionaries.com/definition/english/assumption
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requirements goal models need to be adapted toward the 
varying environments [26].

Although documented assumptions may be flawed, one 
of the most critical problems is that assumptions are usu-
ally kept undocumented in software projects [27], leading 
to architectural mismatches [28, 29], budget and schedule 
overruns [30], security vulnerabilities [31, 32], and a mul-
titude of system issues, defects, and failures. Similar to 
requirements and source code, assumptions are a type of 
software artifacts being produced, modified, and used by a 
process [33]. In Sect. 3, we present our proposal for integrat-
ing environmental assumptions in the requirements-based 
testing process.

2.3 � Requirements engineering and testing

Software development consists of transitions from system 
concept, requirements specification, analysis and design, 
implementation, and test and maintenance [34]. Unterkalm-
steiner et al. [35] used the V-Model of Fig. 1 to show the 

focus of aligning RE and testing in which black-box testing 
is more applicable than white-box testing. A strengthened 
RE-testing alignment could lead to benefits like improved 
product quality [36], cost-effective testing [37, 38], high-
quality test cases [39], and early discovery of incomplete 
requirements [40]. Our use of abstractions is to assist in 
developing acceptance test cases, as will be shown in Sect. 6.

Since requirements are commonly documented in NL, 
NLP techniques have been exploited to assist software test-
ing. Garousi et al. [41] reviewed 67 papers from 2011 to 
2017 on NLP-assisted software testing and summarized 
that the top-three exploited techniques were PoS tagging, 
dependency parsing, and keyword checking. The more 
recent work by Fischbach et al. [42] employed dependency 
parsing to help identify causes and effects from a user story’s 
acceptance criteria. Their empirical results show that the 
NLP-assisted automated approach could generate 56% of the 
test cases. The domain knowledge missed in the acceptance 
criteria was a main reason that hindered the scope of NLP’s 
assistance in testing. Our abstraction identification presented 

Fig. 1   Understanding the focus of aligning RE and software testing in the context of the V-model (adapted from Unterkalmsteiner et al. [35])
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in Sect. 4 thus applies NLP to uncover domain knowledge 
from relevant corpus.

3 � Environmental assumptions 
and requirements‑based testing

Skoković and Skoković [43] introduced requirements-based 
testing (RBT) to address two major issues in software quality 
assurance: (1) validating the requirements are unambiguous, 
consistent, and complete, and (2) designing a necessary and 
sufficient set of test cases from a black-box perspective to 
cover the validated requirements. Figure 2 shows the three 
RBT activities, which we use iTrust’s4 “Schedule Appoint-
ments” requirement [44] to illustrate. Figure 3 displays a 
snippet of this use case.

RBT’s first activity of requirements quality assurance 
stands out from other traditional testing techniques. Not 
only must the requirements be validated against the business 
objectives, but an initial review shall be conducted to try to 
find errors in requirements, such as ambiguity, incomplete-
ness, and inconsistency [45].

Given the validated requirements, the next RBT activity 
is to design such black-box, logical test cases as to achieve 
high test coverage of the requirements [43]. Designing and 
reviewing logical test cases can help discover requirements 
problems, e.g., E1, as currently stated in Fig. 3, is triggered 
by a new appointment type’s name over 30 characters, or 
by a duration unit not entered in minutes. However, S1 
lacks information about whether the name and the duration 
are mandatory at a new appointment type’s creation time. 
Thus, the requirements can be clarified for better logical 
test coverage.

The third RBT activity shown in Fig. 2 concerns execut-
ing tests by adding data to the logical test cases. Once all 

Fig. 2   The RBT process flow (adapted from Skoković and Skoković 
[43])

Fig. 3   Snippet of iTrust’s 
“Schedule Appointments” use 
case (adapted from [15])

4  iTrust is a Java application that provides patients with a means to 
keep up with their medical records and to communicate with their 
doctors [44].
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of the tests designed according to the validated require-
ments execute successfully against the code, Skoković and 
Skoković [43] argue that 100% of the functionality has been 
verified and the code is ready to be delivered into production.

Despite RBT’s attentions paid to requirements, we 
believe the process of Fig. 2 can be enhanced by two shifts, 
both involving environmental assumptions. Note that the 
shifts that we propose concern the second step of test case 
design in Fig. 2. This shows a focused use of environmen-
tal assumptions in the RBT process. We do not apply the 
assumptions to the first step of requirements quality assur-
ance in Fig. 2 because we take the requirements descriptions 
directly from the software vendors. We currently perform 
the step 3 of test execution in Fig. 2 manually and aim to 
improve the test execution efficiency in future work. The 
first shift that we propose over the RBT process of Fig. 2 is 
revisiting the meaning of requirements, which is defined by 
Jackson as [11]:

in which E , S , and R represent environmental assumptions, 
specifications, and requirements respectively. Figure 4 
depicts the conceptual distinction and overlap between the 
environment and the machine (software-to-be). A customer 
requirement R expresses a condition over the phenomena 
of the environment that we wish to make true by install-
ing the machine, whereas an environmental assumption E 
expresses a condition over the phenomena of the environ-
ment that we accept to be true irrespective of the properties 
and behavior of the machine [11, 46]. The ⊢ among E , S , 
and R is an entailment, meaning that if a machine doing S is 
installed in an environment having E , then we know R will 
be fulfilled. Compared with validating R against business 
objectives shown in the top activity of Fig. 2, Eq. (1) shifts 
requirements validation toward the entailment relationship, 
⊢ , to which E is integral.

In Fig. 4, P and C are private to the machine domain: P 
denotes the program implementing the specification, and C 
denotes the computing platform on which P runs. The cor-
rectness of a software implementation is given by Zave and 
Jackson [46] and Gunter et al. [47] as:

(1)E,S ⊢ R

and we further denote the software under test (SUT) by 
( P, C ) to indicate that software testing, including RBT, is to 
stimulate P on C as a whole with concrete input data. From 
Eqs. (1) and (2), we have:

deducing requirements validation in the absence of S.
The second shift that we propose to the RBT process 

shown in Fig. 2 is to highlight the practical value of software 
testing. Dijkstra famously said, “Testing shows the presence, 
not the absence of bugs”5. We argue that searching for those 
environmental assumptions and test inputs such that:

would be more valuable to RBT than trying to achieve a 
100% test coverage against the requirements. Let us revisit 
iTrust’s “Schedule Appointment” requirement in Fig. 3. Sub-
flow [S3] describes two branches after the patient enters the 
requested appointment time: no time conflict with the LHCP 
or otherwise. Two logical test cases can then be designed to 
have both branches covered. However, an unstated assump-
tion about [S3] is that: “If a doctor’s appointment cannot be 
made at the patient’s preferred time, the patient will accept 
an alternative appointment time within 7 days of the pre-
ferred time.”

Making this assumption explicit allows us to construct 
a concrete E (e.g., “a patient wants to know the options, 
and possibly to schedule the appointment, beyond 7 days 
of the unfulfilled, preferred time”) such that E , SUT ⊬ R , 
effectively showing the presence of a bug6 and potentially 
provoking requirements changes. From this example and the 
discussions of this section so far, we derive the desiderata 
of the kinds of E that best support our revised RBT process:

–	 E shall be machine independent. Regardless of iTrust or 
any other machine being the SUT, E is in the indicative 
mood [11], expressing what is assumed to be true in the 
environment.

–	 E shall be requirements related. Although E is inde-
pendent of the machine, it should not be indifferent to 
R . Even for the same SUT, different requirements, in 
principle, need different assumptions to support the RBT.

(2)P, C ⊢ S

(3)E, SUT ⊢ R

(4)E, SUT ⊬ R

Fig. 4   The environment is the part of the world with which the 
machine (i.e., the software-intensive system) will interact (adapted 
from Jackson [11] Zave and Jackson [46], and Gunter et al. [47])

5  https://​en.​wikiq​uote.​org/​wiki/​Edsger_​W._​Dijks​tra (last accessed on 
2022/09/14 12:07:09).
6  By bug, we mean Eq. (4) is evaluated to be true (i.e., the entailment 
relationship fails to hold) under a specific set of E , SUT , and R . We 
refine the notion of bug in Sect. 6 by formulating the test oracle with-
out directly referring to R in order to address the distance between 
observing the software executions and validating the stakeholder 
goals.

https://en.wikiquote.org/wiki/Edsger_W._Dijkstra
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–	 E shall be directly testable. The E that gives rise to exe-
cutable tests is preferred. In addition to being closely 
related to R , E shall induce as concrete test inputs as 
possible to trigger the SUT.

–	 E shall be bug revealing. The practical value of show-
ing the presence of bugs implies that the RBT helps to 
uncover flawed assumptions, faulty implementations, or 
invalidated requirements.

Automatically generating E with all the desiderata from NL 
documents is unrealistic [9], but the less ambitious goal of 
assisting the discovery of problem domain properties is fea-
sible, as evidenced by abstraction identification in RE (cf. 
Sect. 2.1). The next section presents our automated support 
for identifying abstractions driven by the desiderata of E.

4 � Abstraction identification 
for environmental assumptions

Figure 5 shows an overview of our NLP tool chain for 
extracting and ranking abstractions. The candidate abstrac-
tions are then used to assist the human analyst in performing 
the RBT. Our approach consists of three major steps: corpus 
selection from Wikipedia, abstraction identification via NLP 
patterns, and abstraction ranking according to the textual 
similarity between the extracted abstractions and the NL 
requirements of a software-intensive system. This section 
uses iTrust [44], a software system helping to manage elec-
tronic health records, to illustrate our approach.

4.1 � Preprocessing

The data source that we use to identify the abstractions is 
Wikipedia. The main rationale is to achieve the machine 
independent property of the resulting abstractions. Wiki-
pedia is a vast online source of human knowledge that 
describes the concepts across a wide range of domains. 
These descriptions are independent from any specific soft-
ware solutions, and are indicative stating what is believed to 
be true rather than what is wished to be true by introducing 
a software solution. Additionally, Wikipedia is a text corpus 
that collectively contains the current conventional wisdom 

of the subject matters [48]. This ensures the descriptions are 
less biased than individuals’ subjective opinions, e.g., tweets 
or reviews about a software product.

To select a corpus for our purpose of abstraction identi-
fication, a seed page is required to anchor the domain inter-
ests. Our approach relies on the human analyst to provide 
such a seed page. For iTrust, for example, the Wikipedia 
page on “Electronic health records”7 is manually chosen as 
the seed page, from which a corpus containing related pages 
is derived. We build on Ezzini et al.’s recent work where 
they used a domain-specific corpus for detecting require-
ments ambiguities [49]. While using a corpus that is too 
small would be ineffective in recognizing significant terms 
and their relationships, building and using a corpus that is 
too large would be time-consuming and, more importantly, 
would defeat the goal of being domain-specific [49]. In 
Ezzini et al.’s work, 50–250 keywords were tested, and in 
our work here, we empirically set the corpus’s size to be 250 
Wikipedia pages.

To grow from the single seed page to the 250-page cor-
pus, we distinguish two kinds of Wikipedia pages: content 
page introducing a topic and category page listing a set 
of content pages that belong to a topic as well as the sub-
categories of the topic. Figure 6 illustrates the distinction: 
the sub-figure to the left is a content page whereas the one 
to the right is a category page, showing that “Electronic 
health records” contain two sub-categories and 45 pages. 
We further note the hyperlinks within each content page, 
e.g., “health care” and “information systems” of Fig. 6a. 
These links not only provide an efficient navigation mecha-
nism over the Wikipedia contents, but also represent some 
semantic relationships between pages or categories [50]. Our 
corpus is constructed with the following procedure: While 
the total number of pages is less than 250,

1.	 Add the manually identified seed page, resulting in the 
“Electronic health records” corpus size to be 1 page;

Fig. 5   Components of the NLP-aided abstraction identification approach

7  https://​en.​wikip​edia.​org/​wiki/​Elect​ronic_​health_​record (last 
accessed on 2022/09/14 12:07:09).

https://en.wikipedia.org/wiki/Electronic_health_record
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2.	 Add all the content pages belong to the seed page’s 
topic, making the corpus’s size grow to (1+44) = 45 
pages;

3.	 Add all the content pages belonging to the sub-catego-
ries of the seed page’s topic, leading to a (45 ± 30 ± 30) 
= 105-page corpus; and

4.	 From the already added content pages, add the Wikipe-
dia content pages of the hyperlinks before each page’s 
structured table of contents (cf. Fig. 6a). The reason that 
we include into our corpus only the hyperlinked pages 
before the table of contents is because these topics pro-
vide substantial background information for the main 
topic of interest. We operate 4) based on when a page is 
added by following the above 1), 2) and 3) ordering, till 
a total of 250 Wikipedia pages is reached.

We implemented our page selection logic by using the Beau-
tiful Soup Python library [51]. Our Python-based corpus 
builder also ensured that no duplicate Wikipedia page was 
selected. Once the corpus’s 250 pages were chosen, Fig. 5 
shows that data cleansing, tokenizing, and sentence splitting 
would take place. For each page, our data cleansing removed 
the figures and the formatting information (e.g., table of con-
tents). Following prior work [52, 53], we then applied spa-
Cy’s tokenizer [54] to break each page into tokens: words, 
numbers, punctuation marks, or symbols. Finally, we used 
spaCy’s sentencizer [54] to split the text into sentences 
based on conventional delimiters (e.g., period).

4.2 � Extracting abstractions

We process each sentence from the selected Wikipedia pages 
in order to find directly testable abstraction candidates. We 
operationalize testability by formatting an abstraction as a 
<key, value> pair. This hash structure is intended to separate 

a domain concept (key) from its manifestation (value). 
We expect the “key” to help locate “what to test”, and the 
“value” to guide “how to test it” by feeding in concrete data.

Building on the NLP-based abstraction identification 
approaches [2, 3], we define five patterns by exploiting 
the syntactic and grammatical roles that words play in a 
sentence. Figure 7 lists these patterns. Note that Gacitua 
et al. [1, 3] used two PoS patterns—adjectives and nouns 
and adverbs and verbs—to identify abstractions; however, 
the two PoS patterns of our approach, PoS_P1 and PoS_P2 
shown in Fig. 7, consider <key, value> explicitly.

Dependency parsing [55] is the task of identifying 
the grammatical structure of a sentence by determining 
the linguistic dependencies between the words based on 
a pre-defined set of dependency types. For example, in 
the sentence: “The system shall refresh the display”, “dis-
play” is the direct object (dobj) of the main verb “refresh” 
whereas “shall” is the auxiliary verb (aux) adding modal-
ity to the main verb. Dalpiaz et al. [56] recently exploited 
dependency parsing to classify functional and non-func-
tional requirements. Although our objective is to identify 
abstractions, we believe dependency parsing, just like PoS 
tagging, can constitute an effective NLP toolset that offers 
deep domain understandings [2]. We detail each of the five 
patterns as follows:

–	 PoS_P1 extracts the NN or NNS that precedes the 
parentheses as key, and the content inside the parenthe-
ses as value. Cohen et al. [57] showed that the paren-
thesized material in biomedical text often contains data 
value or list element useful for information extraction, 
which we also observe in Wikipedia pages. This pattern 
therefore extracts <“adult”, “age  15  +”> from S1 of 
Fig. 7.

Fig. 6   Sample content page (used in our domain corpus) and sample category page (used to find more content pages to be included in the cor-
pus)
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–	 PoS_P2 leverages a common lexico-syntactic way of pro-
viding examples [58] so as to identify the NN or NNS to 
be a key, and the hyponym(s) [59] following “such as” to 
be its value(s). The pattern thus outputs <“identifiers”, 
“name” “addresses” “social security numbers”> as 
an abstraction candidate for Fig. 7’s S2.

–	 DP_P1 recognizes the nominal subject (“nsub”) or the 
subject’s compound (“compound”) as a key, and the par-
allel NN’s after the main verb “include” (or “includes”) 
as values. Different from the “such as” pattern used in 
PoS_P2, “include” signals a part-whole relationship [60], 
listing several concrete facets of the concept. In Fig. 7’s 
S3, <“practitioner risk factors”, “fatigue” “depression” 
“burnout”> is identified as an abstraction candidate.

–	 DP_P2 treats the nominal subject as a key in the same 
manner as DP_P1; however, its value is extracted based 
on the sequence of “NN, IN, and CD” appearing after the 
main verb. DP_P2 is informed by Dalpiaz et al.’s find-
ing that “IN and CD” often distinguished requirements 
types [56]. For S4 of Fig. 7, DP_P2 uncovers <“fever”, 
“temperature of 37.8◦ ”> as a candidate pair.

–	 DP_P3 also considers the nominal subject to be a key, 
with the value identified via the NN that follows the main 
verb and that is modified by an adjectival (“amod”), 
nominal (“nmod”), or numeric (“nummod”) modifier. 
Finin [61] noted that modifier takes a head concept and 
a potential modifying concept and produces a set of pos-
sible interpretations, which we adopt to derive DP_P3. 
According to this pattern, <“user’s location”, “personal 
information”> is recognized from S5 of Fig. 7.

The above set is by no means an exhaustive list of gram-
matical features that must be associated with environmen-
tal-assumption statements, but a means of automatically 
extracting directly testable abstractions. The NLP patterns 
are informed by the relevant literature [56–61] and further 
realized by our PoS tagging and dependency parsing imple-
mentations built on top of the open-source spaCy library 
[54] written in Python. We also made the implementations 
of our preprocessing and NLP steps publicly available on 
Google Colab [62], facilitating the users to identify abstrac-
tions according to our approach inside their web browsers.

4.3 � Ordering abstractions

So far, our approach processes information related to a 
domain, e.g., Electronic health records. To ensure that our 
abstraction identification is requirements related, we use 
the NL requirements of each specific product [63] to rank 
the abstraction candidates. In this way, even though some 
software-intensive systems are in the same domain, their 
ranked abstractions will be different due to the differences 
of the requirements at the product level.

Given a product’s requirements R={ r1 , r2 , ..., rm } , e.g., 
iTrust’s 54 use cases, we first compute the cosine similarity 
measure between a candidate abstraction (abst) and R with 
TF-IDF weighting [64–66]:

(5)cosine(abst,R) =

m
∑

i=1

cosine(abst, r
i
).

Fig. 7   Illustration of our five patterns for identifying <key, value> 
abstractions in a sentence. PoS (part-of-speech) tags shown here 
include: “NN” (noun, singular), “-LRB-” (left round bracket), 
“-RRB-” (right round bracket), “NNS” (noun, plural), “JJ” (adjec-
tive), “VBP” (verb, non-3rd person singular present), “VBN” (verb, 

past participle), “IN” (preposition), “CD” (cardinal number), and 
“POS” (possessive ending). Dependency parsing types shown here 
include: “compound” (noun compound modifier), “nsubj” (nominal 
subject), and “amod” (adjectival modifier)
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Note that R can be a set of selected requirements, or even a 
single requirement of interest. We then rank all abstraction 
candidates by their cosine similarity scores in a descending 
order.

5 � Evaluating the effectiveness 
and relevance of identified abstractions

This section presents a comprehensive evaluation of our 
abstraction identification approach, comparing its perfor-
mance with the effectiveness of a state-of-the-art tech-
nique: relevance-based abstraction identification (RAI) 
[1]. Furthermore, to assess relevance, we examine the 
resulting abstractions’ matching with manually created 
environmental assumptions, as well as their capabilities 
of revealing software defects. We answer three research 
questions (RQs) in this section by investigating the effec-
tiveness (RQ1), partialness (RQ2), and bug revealingness 
(RQ3) of the produced abstractions. All our experimental 
materials are publicly available at https://​doi.​org/​10.​5281/​
zenodo.​58583​84 (last accessed on 2022/09/14 12:07:09).

5.1 � Domains and subject systems

We chose to study two domains, Electronic health records 
and Web conferencing, due to our familiarity with them 
and the availability of software applications in them. We 
ran our Python-based preprocessing steps in February 
2021. Table 1 shows that, when we manually selected 
https://​en.​wikip​edia.​org/​wiki/​Elect​ronic_​health_​record 
and https://​en.​wikip​edia.​org/​wiki/​Web_​confe​renci​ng (both 
links last accessed on 2022/09/14 12:07:09) to be the seed 
page respectively, a total of 33,988 and 43,744 sentences 
were collected. In both domains, the selected 250 Wiki-
pedia pages were within 3 category depths of each other, 
implying these pages’ topical closeness [67]. The five NLP 
patterns’ applicability ranged from 1.8% to 51.2% of the 
sentences. In both domains, DP_P3 had a wide influence, 
showing that many Wikipedia sentences have described 
the nominal subject (“nsub”) with adjectival, nominal, or 
numeric modifiers.

Table 1   Domain and subject 
system characteristics

Electronic health records Web conferencing

# of sentences 33,988 43,744
Category depths 3 3
# (%) of sentences to which a pattern applies 

requirements
PoS_P1 5437 (16.0%) 4553 (10.4%)
PoS_P2 1962 (5.8%) 1182 (2.7%)
DP_P1 2133 (6.3%) 785 (1.8%)
DP_P2 3236 (9.5%) 2945 (6.7%)
DP_P3 17,393 (51.2%) 15,973 (36.5%)
# of product-level requirements 54 (iTrust) 49 (Teams)

27 (OpenEMR) 26 (Webex)
39 (OpenMRS) 31 (Zoom)

Fig. 8   Sample NL requirements of Zoom

https://doi.org/10.5281/zenodo.5858384
https://doi.org/10.5281/zenodo.5858384
https://en.wikipedia.org/wiki/Electronic_health_record
https://en.wikipedia.org/wiki/Web_conferencing
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We selected three software applications for each chosen 
domain. Table 1 lists the number of NL requirements for 
these applications. In addition to iTrust, we investigated 
two open-source medical record systems: OpenEMR [68] 
and OpenMRS [69]. OpenEMR is one of the most popular 
electronic medical records in use today with over 7,000 
downloads per month, and its project repository lists 27 
features, such as patient scheduling, prescriptions, and 
medical billing [70]. OpenMRS allows for customizable 
electronic medical record systems to support the delivery 
of health care in developing countries; 39 requirements are 
introduced in OpenMRS’s user guide [71], including view-
ing and creating patient records, patient dashboard, etc.

Web conferencing has become one of the most preva-
lent and useful tools due to the COVID-19 pandemic. We 
studied three popular products: Zoom, Cisco Webex, and 
Microsoft Teams. While our experimental materials list all 
the product-level requirements and the online resources from 
which we collected the requirements, Fig. 8 shows a few 
Zoom features.

5.2 � Effectiveness of abstraction identification

As did Gacitua et al. [1], we measure abstraction identifica-
tion’s effectiveness by precision and recall. In addition to our 
<key, value> pair (KVP) abstractions, we also experimented 

with RAI, which uses corpus-based frequency profiling to 
compute the log-likelihood (LL) value for a word w [1]:

in which w
d
 is the number of times w appears in the domain 

documents of the 250 Wikipedia pages, and w
r
 is the number 

of times w appears in the product-level requirements. While 
w
d
 and w

r
 are observed values of w, E

d
 and E

r
 in Eq. (6) are 

expected values: E
d
=nd ⋅(wd+wr)

nd+nr
 and E

r
=nr ⋅(wd+wr)

nd+nr
 , where n

d
 is 

the total number of words in the domain documents, and n
r
 

is the total number of words in the product-level require-
ments. We ranked the single-word abstraction candidates in 
the ascending order of LL

w
 to obtain testable constructs: the 

smaller is LL
w
 , the significance of w in domain documents 

is closer to that of w in product-level requirements, making 
w’s ranking closer to the top. The multiword abstraction can-
didates were recognized by the adjectives and nouns and 
adverbs and verbs PoS patterns, and then ranked by an 
aggregated LL for the multiword unit [1].

Table 2 presents a comparison of RAI and our approach. 
Due to space constraints, we show only the top-ten abstrac-
tion candidates of iTrust and OpenEMR from the healthcare 
domain. To quantitatively and practically evaluate different 
abstraction identification techniques, we measured preci-
sion of the topmost 20, 100, and 200 results. Sawyer et al. 
[2] hypothesized that human analysts would be reluctant to 

(6)LL
w
= 2 ⋅

(

w
d
⋅ ln

w
d

E
d

+ w
r
⋅ ln

w
r

E
r

)

Table 2   Top-ten abstraction 
results of iTrust and OpenEMR 
by RAI [1] and by Our <Key, 
Value> Pair (KVP) approach

Rank iTrust OpenEMR
RAI KVP RAI KVP

1 cardiac <“factors”, subsequent <“identifier type”,
causes “vascular damage”> recovery “uniform”>

2 healthcare <“factors”, subsequent <“cell type”,
“pathogens” “dysfunctions”> amendment “cytokines”>

3 security <“factors”, subsequent <“type”,
“mental protection”> surgical “pharmacologic”>

4 natural <“safety checks”, subsequent <“procedure”, “patient id”
causes “potential dose”> complications “name” “sex” “age”>

5 reversible <“x - rays”, ambulatory care <“term”,
causes “absorbed dose”> pharmacists “patient type”>

6 annual <“rash”, surgical <“type”,
meeting “adverse reaction”> nurses “type private”>

7 pediatric <“dose”, specific <“product type”,
radiology “equivalent dose”> patient types “type stage”>

8 biological <“stage”, dynamic nuclear <“symptoms”, “shortness
causes “ideal dose”> polarization breath” “chest pain”>

9 preventable <“radiation dose”, initial tomography <“type”,
causes “average dose”> acquisition “additional type”>

10 itchy <“radiation dose units”, chest <“type”,
rash “dose units”> pain “type college”>
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explore a long list of abstraction candidates and used the 20 
highest ranked candidates to simulate the hypothesis. Gaci-
tua et al. [1] evaluated the topmost 200 candidates as a prac-
tical upper bound. Therefore, we also computed recall@200 
without exceeding this limit.

The answer set for each subject system was constructed 
by two researchers: first individually and then jointly to 
resolve discrepancies. Cohen’s kappa before the joint meet-
ing was 0.57, signifying a moderate level of inter-rater 
agreement. The main challenge was to handle abstractions 
with varying lengths yet overlapping partially, e.g., in iTrust, 
RAI’s 153rd output was “medical imaging”, and our 31st 
pair was <“medical imaging”, “time”>. The research team 
decided to unify these candidates with shortest-common-
supersequence [72], i.e., creating one element of “medical 
imaging time” in the answer set and then using ‘contained 
in’ to establish a match. In this way, RAI’s 153rd and KVP’s 
31st outputs were considered as matching the answer set’s 
element of “medical imaging time” because both candidates 
were ‘contained in’ that element. Note that the ‘contained 
in’ match was not ordered, so “time medical” would be a 
match, too. The two researchers collaboratively defined the 
answer set for each subject system based on their individual 
judgments and the shortest-common-supersequence unifying 
step. A third researcher reviewed and agreed on the answer 
sets, which we share as a part of our experimental materials.

Figure 9 plots the average precision and recall among 
the three systems in each domain. When considering pre-
cision, we note that KVP outperforms RAI. Such effects 
are observed more prominently in the healthcare domain 
than web conferencing. One reason may be the relatively 

homogeneous domain concepts in web conferencing; in 
contrast, healthcare covers wider domain phenomena, e.g., 
symptoms, health conditions, and treatments. Given that a 
precision over 25% represents practically achievable good 
abstraction identification performance [2], both methods 
perform well at Precision@20 in the healthcare domain; 
however, KVP also performs well at Precision@20 in web 
conferencing and even at Precision@100 in healthcare.

We offer a couple of qualitative insights into the perfor-
mance differences. First, KVP is contextually richer than 
RAI. In iTrust, RAI outputs “blood pressure” as its 45th 
candidate, a rather general concept. A relevant KVP gener-
ated by our approach is the 98th candidate: <“blood pres-
sure”, “140”>, depicting a testable and indicative domain 
phenomenon, i.e., 140 mm Hg or above implies Stage 2 
high blood pressure. Our second observation is that KVP 
tends to group relevant domain phenomena which are spread 
out otherwise. In OpenEMR, for instance, <“symptoms”, 
“shortness breath” “chest pain”> is ranked 8th. RAI, on 
the other hand, recognizes “chest pain” as its 10th candidate 
and “shortness breath” as its 352nd candidate. The distance 
is so large that the two candidates are unlikely to be related 
with one another. As shown in Fig. 9, KVP’s Recall@200 
reaches about 60% in both domains, covering more relevant 
domain phenomena than RAI.

5.3 � Comparison with manually formulated 
assumptions

To gain further insights into abstractions’ completeness, 
we compare them with manually created environmental 

Fig. 9   Accuracy of candidate 
abstractions
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assumptions. Our comparison is twofold: matching the 150 
iTrust assertions studied by Bhowmik et al. [15], and match-
ing the 8 meeting scheduler assumptions shared by Rahimi 
et al. [24]. In both cases, two researchers manually extracted 
the gists of the iTrust assertions and the meeting scheduler 
assumptions, and then matched the automatically generated 
abstractions with those gists in a joint session.

Table 3 shows the coverage results of iTrust. As the envi-
ronmental assertions in [15] are about iTrust’s “Schedule 
Appointments” use case (cf. Fig. 3), we used only this use 
case’s NL descriptions, instead of the NL requirements of 
all 54 iTrust’s use cases, to rank the automatically generated 
abstraction candidates. Inspecting the top-200 abstractions 
identified by RAI and our KVP led to a 50% and 62.5% 

coverage over the eight gists listed in Table 3. For instance, 
“valid user account” was covered by RAI’s 89th candidate 
(“valid patient”) and KVP’s 59th candidate (<“user”, “valid 
patient”>). Compared to RAI, KVP had the highest cover-
age. Notably, the 142nd KVP, <“respondents”, “regular 
patients”>, corresponded to the assertion that the respond-
ents (e.g., a licensed health care professional) shall approve 
or deny the patients’ requests for appointment. Such an 
assertion was not covered by any of the top-200 candidates 
generated by RAI.

In a study on environmental assumptions, Rahimi and 
her colleagues [24] collected 150 statements from the litera-
ture: textbooks, papers, and websites. From this collection, 

we selected all the assumptions of the meeting scheduler 
domain. These eight statements, shown in the leftmost col-
umn of Table 4, were taken from van Lamsweerde [12]. 
The rest of Table 4 provides the top-ranked, relevant KVP 
identified by our approach that matched the assumption. 
Although some statements are idiosyncratic, such as “Sat-
urdays are excluded dates for meetings”, no KVP within the 
top-200 abstractions was found to be relevant to the gist of 
not scheduling meetings on some special date. Overall, the 
coverage of the eight meeting scheduler assumptions [12] is 
58.3% ( 14

24
 ). A noteworthy finding is that, even for the same 

assumption, different abstractions are identified for different 
software products, enabling more specialized testing for each 

Table 3   Coverage of the eight gists of the environmental assertions 
about iTrust’s “schedule appointments” use case [15]

Gist RAI KVP

Valid user accounts
√ √

Valid appointment time
√ √

Valid appointment type
Unique patient account

√ √

Valid schedule alternatives
Designated LHCP
Responding to appointment requests

√

Displaying patient message
√ √

Table 4   Top-ranked <Key, Value> pair matching meeting scheduler’s environmental assumptions (“--” means no relevant pair was found 
within the top-200 abstraction candidates to match the assumption)

Environmental assumption Teams Webex Zoom

A participant cannot attend multiple meetings at the 
same time

67th: <“offline attacks”, 29th: <“shared password, 59th: <“addition users”,

“multiple user accounts”> “another person citation”> “passwords bookmarks”
“history” “cookies”>

Participants will promptly respond to e-mai 
requestsl

58th: <“e-mail”, -- --

“Microsoft 365 Business Basic”>
A participant is on the invitee list if & only if he or 

she is invited to that meeting
-- -- 188th: <“user”,

“required path”>
A meeting is scheduled if & only if its time and 

location are set
5th: <“meetings”, 133rd: <“meeting”, 15th: <“meetings”, “up to

“Microsoft Teams”> “time meeting”> 100 devices” “40-minute
time restriction”>

A meeting is scheduled only if it is requested. -- -- --

Saturdays are excluded dates for meetings -- -- --

Confidentiality rules can prevent non-privileged 181st: <“messenger rooms”, 155th: <“server hosts”, 153rd: <“security”,
participants being aware of constraint “limit participant of 50”> “private sharing”> “unauthorized person”>
Confidentiality rules can prevent non-privileged 173rd: <“access control list”, 165th: <“person meeting”, 129th: <“ip address”,
participants being aware of meetings “OneDrive folder”> “private meeting”> “host identification”>
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system, e.g., checking if a participant who is excluded from 
the “access control list” in the “OneDrive folder” could join 
a Teams meeting, or “ip address” should authenticate “host 
identification” in Zoom.

5.4 � Bug revealing capability of abstractions

As we discussed in Eq. (4), revealing bugs shows the practi-
cal value of the abstractions in the RBT process. Among 
our six subject systems, we focused on the known bugs 
of iTrust, Teams, Webex, and Zoom. Bhowmik et al. [15] 
highlighted two defects of iTrust discovered manually in the 
RBT process. In our analysis, both bugs could be revealed 
with support of the KVP results. We manually judged which 
abstractions, if known to the testers, could help detect the 
bugs. We found that the 139th pair, <“appointment”, “last 
year”>, could help uncover the bug that iTrust allowed an 
appointment to be made for a past time, and the 79th pair, 
<“time”, “scheduling conflicts”> could help detect the 
bug that iTrust allowed a patient to schedule appointments 
with multiple doctors at the same time.

Our manual web search found 7 bugs for Teams, 5 bugs 
for Webex, and 7 bugs for Zoom, all of which are shared in 
our experimental materials. Analyzing the top-200 KVPs 
manually, we were able to use the abstractions to help reveal 
3 Teams’s bugs (43%), 2 Webex’s bugs (40%), and 2 Zoom’s 
bugs (29%). For example, Teams’s 162nd pair was <“meet-
ing organizer”, “repetition occurrence meeting”>, help-
ing to define a path of RBT as follows: 

1.	 Scheduler organizes a daily meeting series;
2.	 Scheduler invites a guest to join only on day #3;
3.	 Guest accesses the meeting series’s text chats on day #4.

If the assumption at step 2) is one-time invitation only, then 
step 3) is expected to fail. However, step 3) was success-
ful in Teams, because Teams assumed the guest invitation 
was from day #3 onward. Constructing the above testing 
path also needs the deep understanding of inviting a guest 
to a “repetition occurrence meeting”. This emphasizes that 
the automatically identified abstractions are supporting the 
human analysts, rather than replacing them, in performing 
RBT. Nevertheless, our 65th KVP, <“sharing feature”, 
“video sharing” “audio sharing” “desktop sharing” 
“file sharing” “whiteboard sharing” “text sharing”>, 
clearly suggests some new testing paths similar to the above, 
where step 3) can concentrate on guest’s access to day #4’s 
uploaded files or day #4’s shared whiteboard. In fact, Teams 
provides separate entry points to chats, files, and white-
boards. Resolving guest’s chat access does not resolve the 
file or whiteboard access. Thus, related KVPs can improve 
the efficiency of uncovering related bugs.

5.5 � Threats to validity

A threat to construct validity is that our answer set’s building 
adopted shortest-common-supersequence [72] in order to 
unify the abstractions identified by different techniques. This 
caused the matching between abstraction candidates and 
answer set elements to be judged on a ‘contained in’ basis, 
which must be taken into account when interpreting our 
reported recall and precision values. Another threat is that 
our assessment of the bug revealing capability of abstrac-
tions is only speculative in this work. In the next section, we 
offer a refined interpretation of bug revealingness thereby 
improving the testing’s objectiveness.

We believe the internal validity is high in that the factors 
potentially affecting the abstractions’ accuracy, coverage, 
and bug revealingness measures are under our direct con-
trol. This makes the abstraction identification techniques the 
cause of observed differences. One factor worth noting is 
that we ran our Python-based preprocessing steps in Febru-
ary 2021 in order to collect the 250 Wikipedia pages for each 
domain; however, the collected pages affected both tech-
niques. The comparison results between RAI and our KVP 
approach therefore remain valid. In addition, our Google 
Colab tool [62] helps mitigate this limitation in that the users 
can identify up-to-date abstractions in a dynamic fashion.

Our evaluation results may not generalize to other sub-
ject systems or other domains, a threat to external validity. 
Studying more software applications within and beyond 
Electronic health records and Web conferencing will be val-
uable. Another threat here is our reliance on Wikipedia for 
abstraction identification. From a computational linguistic 
point of view, Wikipedia provides a balance in size, qual-
ity, and structure, between the highly-structured, but lim-
ited in coverage, linguistic databases like WordNet, and the 
large-scale, but less-structured, corpora such as the entire 
Web [48]. Nevertheless, using other corpora, including 
user forums [73], or combining Wikipedia with additional 
NLP support like WordNet could be interesting directions 
to expand our work.

6 � Feature testing in opposing 
environmental conditions

Building on the identified abstractions, we present in this 
section a new way to perform RBT by targeting a software 
system’s changing features. To that end, we first revisit the 
notion of bug and point out the distance of software testing 
and requirements validation in Sect. 6.1. We then review 
the use of finite state machines to design acceptance test 
cases in Sect. 6.2, articulate our feature testing approach 
in Sect. 6.3, demonstrate the extended support from the 
abstractions in Sect. 6.4, and discuss the implications of 
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environment-driven, abstraction-supported feature testing 
in Sect. 6.5.

6.1 � Revisiting bug revealingness

We previously interpreted bug in RBT according to Eq. 
(4), i.e., the SUT, once executed, fails to entail R . In prac-
tice, this view faces some challenges. Let us revisit the 
Teams’s bug of inviting a guest to join a recurring meet-
ing series. For the stakeholders who want the guest to join 
at a certain point in time and onward, Teams’s current 
implementation would not be buggy, i.e., E, SUT ⊢ R for 
this group of stakeholders. Yet, for those who want the 
guest invitation to be valid for one time and one time only, 
a solution could be using Teams to schedule a separate, 
standalone meeting with the guest and the regular attend-
ees without resorting to the recurring series at all. Then, 
E, SUT ⊢ R also holds for the one time only guest invita-
tion scenario, and hence no Teams’s bug would be found.

Clearly, two different features of the SUT are involved: 
inviting guest to a recurring meeting series and scheduling 
a standalone meeting. Since different features help satisfy 
different, and in this example, diverging goals, recogniz-
ing which feature to test is important to RBT. In another 
word, being requirements related means choosing the right 
feature to test. Besides feature selection, another challenge 
of RBT’s bug revealingness lies in the inherent distance 
between testing a feature and reasoning about a require-
ment’s fulfillment. For Teams’s features, whether meet-
ing with a guest in a recurring series or in a standalone 
meeting, a direct observable is the outcome of the actual 
scheduling, i.e., whether the intended meeting with the 
right parties is successfully scheduled or not. However, the 
requirements-level concern here is the extent to which the 
guest is permitted to access the shared information, such 
as files and chats. In fact, inviting the guest to a meeting 
series or an individual meeting may result in a pass if the 
test oracle (i.e., expected outcome) hinges on scheduling 
confirmation. A gap exists between observing a meeting’s 
scheduling confirmation and guarding the guest’s permis-
sible access to the sharables.

To further illustrate this gap, let us also revisit the 
iTrust’s bug which allowed a patient to schedule appoint-
ments with multiple doctors at the same time [15]. From 
the patient’s perspective, the requirement R might be: 
“to consult with the family doctor and other epidemiol-
ogy experts about the holiday travel under the wide and 
quick spread of Omicron”. Note that this R is optative and 
refers to only the private phenomena of the environment. 
The R is fulfilled if the consultation actually happens and 
the patient receives proper travel advice. Therefore, even 
though iTrust’s buggy implementation allowed multiple 
doctor’s appointments to be made, the patient’s R could 

still be satisfied, e.g., by consulting with the multiple 
doctors over a Teams’s virtual session. In this example, 
iTrust’s appointment-scheduling feature exhibits a non-
negligible distance to the validation of R . The buggy 
implementation of iTrust, according to [15], turns out to 
be capable of meeting the patient’s needs.

In summary, there exist a couple of challenges of inter-
preting bug based on the failure of requirements fulfill-
ment: (1) choosing the right feature to test and (2) address-
ing the gap between software testing and requirements 
validation. Before presenting our approach to tackling 
these challenges in Sect. 6.3, we review the existing way 
of using state machines to design acceptance test cases.

6.2 � Acceptance test cases

Hsia et al. [74] were among the first to link acceptance 
testing and requirements engineering. They introduced 
scenario analysis in which requirements analysts manually 
constructed a finite state machine for the user or customer 
view. For illustrative purposes, we manually built a finite 
state machine model for iTrust’s Schedule Appointments use 
case (cf. Fig. 3), and our model is shown in Fig. 10.

The finite state machine formalism helps to system-
atically generate acceptance test cases. From Fig. 10, for 
instance, we could derive the test cases, such as [e1], [e2], 
and [e1◦e3] . The formalism encapsulates the logical test 
case design advocated by Skoković and Skoković [43]. The 
literature also distinguishes positive test cases from nega-
tive ones, e.g., [e1] over Fig. 10 tests the positive outcome 
of adding a new appointment type, whereas [e2] tests the 
negative outcome. Having both positive and negative tests is 

S1

S2

e1: “annual
physical”

E1

e2: “c1c2 
…c31”r1: “try 

again”

E2

e4: “ ”r2: “No 
comment”

S3

e3: “A
comment”

S4

e5:
“6/1/22”

S5

e6:
“5/31/22”

r3: “6/1/22”
     “6/2/22”
     “6/3/22”

Fig. 10   Modeling iTrust’s Schedule Appointments use case (cf. 
Fig. 3) with a finite state machine in which the additional states “S4” 
and “S5” represent “request is saved” and “time conflict is detected” 
respectively. The transition is labeled with “e” (user-entered input) or 
“r” (system-generated response)
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important for acceptance testing [42, 75]. However, we argue 
that both types are about what is desired from the imple-
mented software: desired to confirm a success or desired 
to throw an exception. Such a desire is what the optative 
S shows in Fig. 4 and is defined only within the machine 
boundary. Next, we explore a new way to inject E explicitly 
into a feature’s acceptance testing.

6.3 � Testing software’s changing features

In a rapidly evolving technological landscape, many software 
vendors seek to test and launch their products and services 
continuously. For example, Cisco released 27, 16, 22, and 25 
Webex features in August, September, October, and Novem-
ber of 2021, respectively [76]. One of August’s changing fea-
tures is to adjust camera brightness. Figure 11 shows Cisco’s 
description of this feature, from which the texts introduce the 
functionalities (i.e., automatic and manual adjustments), how 
to invoke them in the software (e.g., checking the box, a slider 
control, etc.), and the constraints (e.g., the software feature’s 
dependency on Hardware Acceleration for video). The picto-
rial part of Fig. 11, which is only optional to feature descrip-
tion, helps illustrate the invocation, operation, and expected 
behavior of the functionalities.

Our current work focuses on testing the changing features 
like Webex’s adjusting camera brightness. This is because not 
only that a feature represents the increment of functionality 

and hence a coherent S of the software, but also that the new 
code associated with the changing feature tends to have more 
bugs and be less well tested for edge cases [77]. Performing 
the RBT on the changing feature, rather than on the software as 
a whole, addresses the challenge of choosing the right feature 
to test discussed in Sect. 6.1. To address the other challenge 
of testing’s distance from validating R , we define the oracle 
as follows:

in which ( E , ¬ E ) consists of a pair of opposing environ-
mental conditions. Compared to Eq. (4), this formulation 
eliminates the need for R and also pins down the unit of 
testing to a specific feature. Intuitively, Eq. (7) asserts that 
the same feature would behave differently when tested in an 
opposing pair of conditions, i.e., we expect the behavior of 
the feature observed in E to be different from the behavior 
of the same feature observed in ¬ E . Note that the test oracle 
of Eq. (7) always compares two executions of a particular 
feature, instead of expressing the anticipated outcome of that 
feature in a solo condition.

To better understand the feature testing approach char-
acterized by Eq. (7), we consider Webex’s adjusting cam-
era brightness feature introduced in Fig. 11 and identify a 
relevant ( E , ¬ E ) pair to be (“the user is in a bright room”, 
“the user is in a dark room”). Both E and ¬ E refer to the 

(7)E, feature ≠ ¬ E, feature

Fig. 11   Adjusting camera brightness feature of Webex [76]
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indicative, private phenomena of the environment [11]; how-
ever, they represent the opposing ends of a locational facet 
of the user of Webex, or more specifically, the user of the 
“adjusting camera brightness” feature. Following Eq. (7), 
we expect (“the user is in a bright room”, “adjusting camera 

brightness”) to behave differently from (“the user is in a 
dark room”, “adjusting camera brightness”), which serves 
as the oracle of our RBT. Carrying out the actual testing 
with the guidance of this oracle is straightforward. Figure 12 
shows the testing results. From the standpoint of seeing the 

Fig. 12   Results of testing Webex’s adjusting camera brightness feature
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user more clearly, we could conclude that “adjusting camera 
brightness’ in E (cf. Fig.12a) has a different effect compared 
to observing the same feature’s outcome in ¬ E (cf. Fig. 12b). 
The testing results thus support the oracle of Eq. (7).

What this example shows can be regarded as a confirmed 
boundary condition, which, if known before the feature’s 
deployment, could better inform the end users about their 
expectations of the newly released functionalities of the soft-
ware. For instance, an additional constraint might be inserted 
into the feature description of Fig. 11 to state that the adjust-
ing camera brightness feature does not work well in a dark 
environment. Furthermore, making the feature work well in 
¬ E can be added to the backlog as a new requirement, allow-
ing the developers to improve the capabilities of the software 
and to make innovations in their product. The software fail-
ure here—its inability to display the user more clearly—is 
uncovered unexpectedly with respect to the development 
team and yet purposefully by our approach. Hence, our 
environment-driven feature testing is capable of revealing 
bugs that drive continued innovation.

6.4 � Quantitative analysis

To provide automated support for the feature testing 
approach of Sect. 6.3, we follow the process of Fig. 5 to 
generate a ranked list of abstractions in the form of <key, 
value> pairs. The abstraction ranking is performed by cal-
culating the cosine similarity with TF-IDF weighting (cf. 
Eq. 5) between each abstraction candidate and a given fea-
ture’s NL description. Our current NLP support does not 

consider the pictorial part but only the NL part of a fea-
ture’s description (cf. Fig. 11). As our feature testing oper-
ates on E and ¬ E according to Eq. (7), we treat the identified 
abstraction as E , and add a new NLP method to automati-
cally search for ¬ E of a given E . Our implementation makes 
use of WordNet’s antonyms() function as part of Python’s 
NLTK package [78]. This function returns a set of antonyms 
for a single English word if they exist in WordNet’s lexical 
database. Previous work leveraged this function for various 
purposes, e.g., Lilian et al. [79] identified antonyms for the 
adjective in a word embedding model, and Killawala et al. 
[80] produced all possible antonyms and synonyms for the 
given word to develop a framework to automate the process 
of quiz and exam question generation.

Inspired by the previous work, we compute the antonyms 
for key and for value separately from the abstractions that we 
identified in January 2022. Table 5 illustrates the resulting 
antonyms of the top-10 abstractions for Webex’s side-by-
side mode for dual camera support feature released by Cisco 
in August 2021 [76]. The NL description of this feature is: 
“Users can share live content through the back camera of 
their device while remaining a video participant through the 
front camera of their device. When users use Side-by-Side 
mode for dual camera, their front and back camera video 
is combined to one video side by side. The other meeting 
participants see the participant video that placed the user’s 
front video and back video side by side at the same time.” As 
shown in Table 5, more antonyms are found for values than 
for keys; this trend generally holds in our experimentation 
of Webex’s new and changing features. For each identified 
antonym, we automatically form ¬ E in the <key, value> 

Table 5   Antonyms of the top-
10 abstractions of Webex’s side-
by-side mode for dual camera 
support 

Rank Abstraction Antonyms of key Antonyms of value

1 <“side”, “human side”> “bottom”, “top” “nonhuman”, “bottom”, “top”
2 <“side”, “short side”> “bottom”, “top” “retentive”, “long”, “tall”,

“bottom”, “top”
3 <“side”, “left side”> “bottom”, “top” “center”, “right”, “bottom”,

“top”
4 <“side”, “right side”> “bottom”, “top” “wrong”, “center”, “left”, “in-

correct”, “bottom”, “top”
5 <“video camera”, “pro- -- “unprofessional”, “nonpro-

fessional camera”> fessional”
6 <“video camera”, -- “analog”

“digital camera”>
7 <“effect”, “back side”> -- “forward”, “front”, “bottom”,

“top”
8 <“hand”, “hand camera”> -- --

9 <“video”, “quality video -- --

at 2”>
10 <“video interpreting”, -- “dead”, “recorded”

“live video”>
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pair. For example, only one ¬ E exists for the 6th pair in 
Table 5, which is <“video camera”, “analog camera”>. 
Note that our ¬ E construction replaces key or value, but not 
both simultaneously. The 1st abstraction of Table 5, thus, 
has five ¬ E pairs: <“bottom”, “human side”>, <“top”, 
“human side”>, <“side”, “nonhuman side”>, <“side”, 
“human bottom”>, and <“side”, “human top”>. Having 
antonyms on both key and value, such as <“bottom”, “non-
human side”>, deviates too much from E and is therefore 
not considered as a ¬ E pair.

We performed a quantitative study on the recently 
released Webex features. Table 6 lists some characteristics 
of the features, as well as some summary statistics of the 
¬ E formation results. Altogether, Cisco released an aver-
age of 22.5 Webex features over the period of four months 
from Aug 2021 to Nov 2021; however, we experimented 
about a half of those features as a result of our manual fea-
sibility analysis. In particular, we excluded features related 
to hardware upgrade (e.g., support available for Apple iOS 
15 as part of Oct 2021’s release) and software integration 
(e.g., Microsoft Teams integration: starting and schedul-
ing meetings from message extension as part of Sept 2021’s 
release), because our acceptance testing currently focuses 
on a specific functional aspect of one software system, i.e., 
Webex. As shown in Table 6, our feature testing approach is 
applicable to 49% of the new and changing features, among 
which 55% included pictorials in their descriptions. Con-
sidering all the 44 features that we experimented with, the 

NL description parts contain an average of 8.4 sentences 
per feature, indicating the lightweight documentation of 
the external release notes. While our approach takes into 
account only the NL parts of the features descriptions, pro-
cessing the pictorials in an automatic way seems to be an 
interesting direction for future research.

The bottom of Table 6 shows the results of antonym 
searching for the top-20 ranked abstractions. This decision 
was informed by the accuracy results presented in Fig. 9. 
As mentioned earlier, less antonyms were found for keys 
than for values. In fact, all the features in our experiment 
resulted in ¬ E based on the abstractions’ values. In terms of 
the number of antonyms found, each key returned 1.8 and 
each value returned 2.0 on average. As listed in Table 6, the 
total number of <key, value> pairs representing ¬ E is 342, 
125, 189, and 242 for Aug, Sept, Oct, and Nov, respectively. 
Each ¬ E , along with the corresponding E , serves as a unit 
of analysis for our feature testing. We classify the results as 
follows:

–	 Case 1: untestable means that the formed ¬ E is not 
viable to be a test oracle, and hence no feature testing 
could be performed. For example, the ¬ E of <“video 
interpreting”, “dead video”> formed on the basis of 
the 10th abstraction shown in Table 5 is untestable. Case 
1 thus offers little value to the software developers or 
testers.

Table 6   Characteristics of Webex features released over a four-month period from Aug 2021 to Nov 2021, and ¬ E formation summaries

Aug Sept Oct Nov Average

Feature characteristics # of features released by Cisco 27 16 22 25 22.5
# (%) of experimented features 14 (52%) 8 (50%) 10 (45%) 12 (48%) 11 (49%)
average # of sentences per feature 7.3 10.9 8.6 7.9 8.4
# (%) of features with pictorials 8 (57%) 4 (50%) 7 (70%) 5 (42%) 6 (55%)
# of features with key’s antonyms 3 1 3 2 2.3

¬ E formation summaries # of features with value’s antonyms 14 8 10 12 11
average # of antonyms per key 2.0 1.0 1.6 1.8 1.8
average # of antonyms per value 2.2 1.8 2.0 1.8 2.0
total # of ¬ E formed as <key, value> pairs 342 125 189 242 224.5

Fig. 13   Feature testing results
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–	 Case 2: boundary condition confirmed suggests that 
not only is ¬ E testable, but also the test oracle of Eq. (7) 
is supported by the actual feature testing. For instance, 
the 3rd abstraction identified for Nov’s support Q &A 
and chat during a practice session in Webex Events 
feature is E=<“chat”, “online chat”>. Running anto-
nyms() on the value of this E returns ¬ E=<“chat”, 
“offline chat”>. Our feature testing did confirm that 
E, feature ≠ ¬ E, feature , since an offline chat was disa-
bled to be sent in Webex. Therefore, Case 2 helps to test 
the feature fails as expected, increasing the confidence 
toward the decision of releasing the feature.

–	 Case 3: unexpectedly failed, such as the testing results 
shown in Fig. 12, provides valuable information for the 
software development team to catch buggy implementa-
tions, improve the release notes, and create potentially 
innovative features as new requirements.

Figure 13 shows our feature testing results in which the 
number of analysis units driven by ¬ E is annotated under 
each month. Overall, our current use of antonyms() has 
64–82% untestable results, making the increase in preci-
sion an important target for future work. As antonyms() 
works only for a single word, building a mechanism to han-
dle phrases could potentially reduce the untestable ¬ E . The 
boundary condition confirmed case ranges from 16 to 35% 
in Fig. 13. If we consider the testable ¬ E’s, then a domi-
nant proportion have led to the testing results confirming the 
oracle. On one hand, such findings indicate the viability of 
our test oracle formulated in Eq. (7). On the other hand, the 
Webex features released by Cisco are indeed of high qual-
ity when tested both positively and negatively in different 
environments. Finally, unexpectedly failed cases appear in 
a few occasions, demonstrating the additional value offered 
by our feature testing approach.

6.5 � Discussions

Our feature testing approach is motivated by the couple of 
practical challenges presented in Sect. 6.1. Because choos-
ing the right feature from an entire software system to test 
is difficult, we will not choose but instead test each new and 
changing feature to be released. Because reasoning about 
requirements satisfaction by only observing software test-
ing results is difficult, we will perform testing according to 
a well-defined oracle given in Eq. (7).

Such an oracle takes advantage of metamorphic testing, 
which is a property-based software testing technique that 
has been successfully applied to scientific software systems, 
search engines, AI-based applications, among others [81, 
82]. In essence, metamorphic testing relies on some domain 
properties, such as sine(x)=sine(�---x), to test a software’s 

implementation. In many occasions, one may not know the 
exact output before testing the software with a single test 
case, e.g., the exact value of sine(x) for an arbitrary x might 
be unknown due to the implementation’s numerical deci-
sions, the exact search results and their correct ranking of an 
arbitrary query may be unknown due to subjectivity and the 
lack of knowledge about the user’s search intent, etc. Execut-
ing a software’s implementation with multiple test cases and 
then checking whether a desired property would hold is what 
metamorphic testing embodies. Our work extends the body 
of work on metamorphic testing by asserting the software 
property relative to a coupled dual environmental conditions. 
This new way of focusing on requirements-level features to 
structure metamorphic testing addresses a critical challenge 
of metamorphic relation construction [81, 82].

The implications of our work also relate to A/B testing, 
which can be regarded as a type of controlled experiment 
that compares two variants: A (a control) and B (a treat-
ment) [77]. Modern tech companies including Amazon, 
Google, LinkedIn, and Microsoft use A/B testing as a way 
to align RE and software testing, as designing and running 
a control experiment with actual end users could inform 
whether a deployed feature, e.g., integrating Bing’s search 
results with social media, influences the overall evaluation 
criterion. Auer et al. [83] reported that the least common 
type of treatment encountered in the A/B testing literature 
was new features, which our work addresses. Our feature 
testing approach is complementary to A/B testing. While 
A/B testing constructs two different conditions: one with a 
new feature and the other without it, our work can be used 
to better design the conditions of the treatment, e.g., under 
which environmental circumstances the feature is really 
experimented and what other factors need to be controlled or 
interpreted with caution. The A/B testing results could also 
inform the E and ¬ E design of our feature testing approach.

As for the connection between abstraction identification 
and ontology engineering, early-RE work such as Sawyer 
et al. [2] used the identified abstractions as candidate class 
names in UML modeling. In contrast, we focus on iden-
tifying key-value pairs to assist requirements-based test-
ing and, hence, favor attributes such as testability and bug 
revealingness.

7 � Conclusions

Automatically finding abstractions that are of particular sig-
nificance in a given domain has attracted much attention 
in RE, though the primary focus has been on supporting 
early-RE activities such as requirements elicitation and mod-
eling [1–4]. In this paper, we have presented an automated 
approach built on five novel NLP patterns to identifying 
abstractions in the form of <key, value> pairs. We regard 
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such a form to be testable and also select relevant Wikipedia 
pages as an indicative corpus. Evaluating our approach with 
six software applications in two different domains shows that 
the <key, value> pairs are more accurate than the abstrac-
tion candidates generated by contemporary techniques. Ini-
tial findings also indicate our abstractions’ capabilities of 
revealing bugs and matching the environmental assumptions 
created manually.

Building on the identified abstractions, we introduce a 
new way of performing feature testing to overcome a couple 
of practical challenges: choosing the right feature to test and 
bridging the reasoning about requirements satisfaction from 
observing software executions. We extend the automated 
support with WordNet’s antonyms() function to help con-
struct an opposing environmental condition for an abstrac-
tion’s key and value. Analyzing the recently released Webex 
features shows the viability of the test oracle underlying our 
feature testing approach and illustrates the potential innova-
tion that the unexpectedly failed cases could provoke to the 
software development project.

Our work can be extended toward several avenues. Empir-
ical studies, including theoretical replications [84, 85], with 
more software systems and more application domains are 
needed to lend strength to the findings reported here. Moreo-
ver, grouping related abstractions can be explored for uncov-
ering more bugs. Finally, developing a mechanism to find 
antonyms for a phrase and even a hash structure, rather than 
only for a single English word, might improve the precision 
and the utility of our feature testing approach.
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