
Vol.:(0123456789)1 3

Requirements Engineering (2022) 27:405–427
https://doi.org/10.1007/s00766-022-00390-8

ORIGINAL ARTICLE

Testing software’s changing features with environment‑driven
abstraction identification

Zedong Peng1 · Prachi Rathod1 · Nan Niu1  · Tanmay Bhowmik2 · Hui Liu3 · Lin Shi4 · Zhi Jin5

Received: 20 January 2022 / Accepted: 6 September 2022 / Published online: 20 September 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Abstractions are significant domain terms that have assisted in requirements elicitation and modeling. To extend the assistance
toward requirements validation, we present in this paper an automated approach to identifying the abstractions for supporting
requirements-based testing. We select relevant Wikipedia pages to serve as a domain corpus that is independent from any
specific software system. We further define five novel patterns based on part-of-speech tagging and dependency parsing, and
frame our candidate abstractions in the form of <key, value> pairs for better testability, where the “key” helps locate “what
to test”, and the “value” helps guide “how to test it” by feeding in concrete data. We evaluate our approach with six software
systems in two application domains: Electronic health records and Web conferencing. The results show that our abstractions
are more accurate than those generated by a state-of-the-art technique. While the initial findings indicate our abstractions’
capabilities of revealing bugs and matching the environmental assumptions created manually, we articulate a new way to
perform requirements-based testing by focusing on a software system’s changing features. Specifically, we hypothesize that
the same feature would behave differently under a pair of opposing environmental conditions and assess our abstractions’
applicability to this new form of feature testing.

Keywords  Abstractions · Natural language · Environmental assumptions and conditions · Requirements-based testing

1  Introduction

In requirements engineering (RE), an abstraction refers to a
term that has a particular significance in a given domain [1].
For example, “radar” is recognized as an abstraction in the
air traffic control problem domain [2], and so is “antenna”
in the radio frequency identification (RFID) application
domain [3]. In order to reduce the requirements engineer’s
effort, researchers have developed methods to automatically
identify the abstractions from the natural language (NL) doc-
uments. While the seminal work of AbstFinder searches for
patterns of byte sequences [4], other researchers have located
the abstraction candidates by exploiting natural language
processing (NLP) techniques (e.g., corpus-based frequency
profiling and part-of-speech tagging) [2, 3, 5–7].

Current support is mainly for early phase RE where the
focus is on understanding the problem domain before formu-
lation of the initial requirements [8]. For instance, Sawyer
et al. [2] showed in an air traffic control case study that the
abstractions extracted from a set of ethnographic fieldnotes
by NLP could match the elements of a class diagram at a
75% recall and 12% precision level. Clearly, the relevance

 *	 Nan Niu
	 nan.niu@uc.edu

	 Zedong Peng
	 pengzd@mail.uc.edu

	 Prachi Rathod
	 rathodpt@mail.uc.edu

	 Tanmay Bhowmik
	 tbhowmik@cse.msstate.edu

	 Hui Liu
	 liuhui08@bit.edu.cn

	 Lin Shi
	 shilin@iscas.ac.cn

	 Zhi Jin
	 zhijin@pku.edu.cn

1	 University of Cincinnati, Cincinnati, OH, USA
2	 Mississippi State University, Mississippi State, Starkville,

MS, USA
3	 Beijing Institute of Technology, Beijing, China
4	 Institute of Software Chinese Academy of Sciences,

University of Chinese Academy of Sciences, Beijing, China
5	 Peking University Beijing, Beijing, China

http://orcid.org/0000-0001-5566-2368
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-022-00390-8&domain=pdf

406	 Requirements Engineering (2022) 27:405–427

1 3

of such NLP results must be vetted by the requirements
engineer.

Indeed, Ryan [9] argued that NLP should play only a
partial role in requirements validation, i.e., demonstrating
convincingly a software system’s conformance to stake-
holder needs, because validating requirements must remain
an informal, social process. Ryan [9] further pointed out that
an intrinsic difficulty lies in the identification of assumptions
that reflect the shared, common sense knowledge of people
familiar with the social and technical contexts within which
the software system operates.

Significant to RE are the environmental assumptions
[10], i.e., the conditions over the phenomena of the physi-
cal world that one accepts as true irrespective of the soft-
ware to be built [11]. In this paper, we use assertion [11]
and assumption [12] interchangeably to refer to a statement
indicating a property over the phenomena in the software’s
operational context that is accepted as true by the develop-
ers [13]. Many software problems originate in missing or
flawed environmental assumptions. Notably, the assumption
made about the maximum horizontal velocity did not hold
for Ariane 5, contributing to the rocket launch failure [14].
Making the assumption statements explicit is therefore key
to understanding the informal, social aspects of requirements
validation.

A recent empirical study by Bhowmik et al. [15] with
114 developers showed the positive impact of environmental
assumptions on requirements-based testing. One concrete
result highlighted the assumption: “a doctor’s appointment
shall be scheduled only for a future timeslot”. This state-
ment generally holds independent of any specific software
system. As a result, it helped to uncover a defect in a soft-
ware application where a patient was able to make a doc-
tor’s appointment for a past date and time [15]. Despite the
positive impact, Bhowmik et al. [15] reported that manually
formulating complete and correct environmental assump-
tions from scratch is challenging.

Using NLP to automatically produce assumption state-
ments, according to Ryan [9] and Sawyer et al. [2], is
infeasible; however, narrow domain understanding in the
form of abstractions has been shown to be realistic [1–4].
Our objective in this paper is to automatically identify the
abstractions that are both indicative of important domain
phenomena and amenable to requirements-based testing.
To that end, we derive a corpus by selecting pages from
Wikipedia, an exceptional repository codifying our shared
knowledge about specific and connected topics. We then
define a novel set of NLP patterns to extract and rank candi-
date abstractions. We show the effectiveness of our approach
by comparing its results with abstractions identified from
the state-of-the-art method [1]. We also demonstrate our
approach’s usefulness by relating the resulting abstractions
to the environmental assumptions created manually [12, 15].

In our previous work [16], we derived four desiderata
based on Jackson’s conceptualization [11] for abstraction
identification in the context of requirements-based testing:
machine independent, requirements related, directly testable,
and bug revealing. Our interpretation of a bug hinged on the
failure of requirements fulfillment [16]. However, our analy-
sis of some real-world bugs showed that a non-negligible
distance often existed between testing a software feature and
fulfilling a stakeholder’s need. Thus, in this extension of our
previous paper, we address such a distance by refining the
notion of bug revealing, which in turn shapes the operation-
alization of testability. In particular, we depict a new form of
acceptance testing when a changing feature is considered to
be deployed, where a feature is an increment of functional-
ity usually with a coherent purpose1. Rather than testing the
software feature in a single environment to show the failure
of requirements fulfillment [16], the extension of this paper
shifts the requirements-based testing’s focus toward testing
the feature in a pair of opposing environmental conditions.
The testing expectation (or oracle [17]) is that the feature
would behave differently under these contrasting condi-
tions, effectively tackling the distance between observing
the execution of a feature and validating the satisfaction of
a requirement.

The main contribution of our work is the abstraction iden-
tification that goes beyond early phase RE and offers new
support for requirements-based testing. Our evaluation with
six software applications in two different domains shows
the effectiveness of our approach. In what follows, we pre-
sent background information in Sect. 2. We then clarify the
influence of environmental assumptions on requirements-
based testing in Sect. 3. Section 4 details our NLP tool
chain, Sect. 5 describes the empirical evaluations for the
effectiveness and relevance of identified abstractions, Sect. 6
discusses the extended way of testing a software’s chang-
ing features with support of abstractions, and finally, Sect. 7
concludes the paper.

2 � Background and related work

2.1 � Abstraction identification in requirements
engineering

Abstractions are important domain concepts which the
human analyst needs to identify in order to understand the
problem domain as well as the constraints on the range
of possible solutions [2]. To support the elicitation of the
initial requirements, Goldin and Berry [4] developed the

1  http://​www.​pamel​azave.​com/​faq.​html (last accessed on 2022/09/14
12:07:09).

http://www.pamelazave.com/faq.html

407Requirements Engineering (2022) 27:405–427	

1 3

AbstFinder tool based on the idea that important abstractions
would recur frequently as repeated words within the target
NL document. AbstFinder thus searches for co-occurring
byte sequences within pairs of sentences using a series of
circular shifts and returns a ranked list of frequently occur-
ring byte sequences that a human analyst must recognize as
parts of words and phrases.

To be successful in supporting early phase RE, the auto-
matic identification of abstractions must achieve a level of
completeness at least as good as that achieved by a human
analyst. High recall values are often obtained at the cost
of low levels of precision [18–20]. As noted by Sawyer
et al. [2], when a complex problem is tackled, a precision
of 25% or higher represents good abstraction identification
performance.

Sawyer et al.’s air traffic control case study confirmed the
practically achievable precision level, where a NLP tool-
set—word frequency and collocation, part-of-speech (PoS)
tagging, and shallow semantic analysis—was used to extract
abstractions from an aggregated set of ethnographic field-
notes comprising about 44,000 words [2]. The technique
achieved a 21% precision, showing the practical perfor-
mance when processing a sizable volume of text.

Gacitua et al. [1, 3] used corpus-based frequency pro-
filing to identify single-word abstractions. Given a domain
document D and a normative corpus C, frequency profiling
computes a term t’s log-likelihood value2 LL

t
 according to

t’s observed values in D and its expected values in C. The
greater the LL

t
 value is, the more significant t is in D than

in C, and hence the more likely t is an abstraction. Because
over 85% domain-specific terms are multiword units [21],
Gacitua et al. also recognized multiword abstractions via
syntactic patterns based on PoS tagging, namely adjectives
and nouns, and adverbs and verbs. In an experiment with
the full text of a book containing 156,028 words, Gacitua
et al.’s method achieved a 32% recall and a 32% precision,
outperforming AbstFinder’s 7% recall and 7% precision [1].

It should be pointed out that Gacitua et al. [1, 3] used
AbstFinder as a one-shot tool, which was not the intended
use as conceived by Goldin and Berry [4]. AbstFinder is
aimed at helping a human analyst to identify the abstraction
in an interactive and iterative manner. After all, it finds only
fragments of words that only an intelligent human can rec-
ognize as portions of relevant words and phrases. After each
use of AbstFinder on the input that is left, the input is to be
strained to remove from it the text related to the abstractions
identified in the last use of AbstFinder. Then, AbstFinder
is applied to the strained input [4]. We therefore compare
our approach introduced in this paper to the abstraction

identification mechanism defined by Gacitua et al. [1], as
both are intended to be used in a one-shot manner.

In summary, abstraction identification can be thought of
as where the expertise of domain expert and requirements
engineer meet [3]. Since domain expertise is often avail-
able to the requirements engineer as NL documents (e.g.,
marketing reports, feature-release notes, etc.), abstractions
identified from the relevant documents help encapsulate the
rich contextual information needed for the framing of the
requirements. Framing the requirements, as Jackson [11]
pointed out, must consider explicitly the phenomena of the
environment in which the software operates.

2.2 � Environmental assumptions

An assumption is defined as: “a thing that is accepted as true
or as certain to happen, without proof”3. In software devel-
opment, an environmental assumption is a statement about
the software system’s operational context that is accepted
as true by the developers [13]. For example, the statement:
“a train is moving if and only if its speed is non-null” [12]
is an assumption made about the physical world, whereas
the statement: “the operator will not enter data faster than
X words per minute” [22] is an assumption made about the
user interactions with the software-intensive system.

Many software problems originate in missing, inadequate,
inaccurate, or changing environmental assumptions [12].
Besides the aforementioned Ariane 5 launch failure [14],
other examples include the false assumption regarding the
stopping distance when heavier New York subway trains
were introduced [23], as well as the inadequate assumption
about the Therac-25 radiation therapy machine’s protective
circuits and mechanical interlocks [22]. All these flawed
assumptions resulted in accidents and in the Therac-25 case,
even fatal accidents.

Diagnosing whether an existing assumption is incor-
rectly removed or retained in a software product line is
addressed by Rahimi and her colleagues [24]. Their diagnos-
tic approach considers only the safety-related assumptions
that are linked to the manually conducted Failure Mode,
Effects and Criticality Analysis (FMECA) [25]. Rules are
then defined to flag potential assumption errors for a new
or changed product (e.g., a removed assumption that should
have been maintained). Another source of variability is the
location specificity of environmental assumptions pointed
out by Alrajeh et al. [26]. While in London “polluting
vehicles are admitted in a Low Emission Zone (LEZ)”, the
assumption does not hold everywhere, e.g., polluting vehi-
cles are not admitted in Brussels’s LEZ. As a result, the

2  Mathematical definition is provided later in Eq. (6) of Sect. 5.2.
3  http://​www.​oxfor​ddict​ionar​ies.​com/​defin​ition/​engli​sh/​assum​ption
(last accessed on 2022/09/14 12:07:09).

http://www.oxforddictionaries.com/definition/english/assumption

408	 Requirements Engineering (2022) 27:405–427

1 3

requirements goal models need to be adapted toward the
varying environments [26].

Although documented assumptions may be flawed, one
of the most critical problems is that assumptions are usu-
ally kept undocumented in software projects [27], leading
to architectural mismatches [28, 29], budget and schedule
overruns [30], security vulnerabilities [31, 32], and a mul-
titude of system issues, defects, and failures. Similar to
requirements and source code, assumptions are a type of
software artifacts being produced, modified, and used by a
process [33]. In Sect. 3, we present our proposal for integrat-
ing environmental assumptions in the requirements-based
testing process.

2.3 � Requirements engineering and testing

Software development consists of transitions from system
concept, requirements specification, analysis and design,
implementation, and test and maintenance [34]. Unterkalm-
steiner et al. [35] used the V-Model of Fig. 1 to show the

focus of aligning RE and testing in which black-box testing
is more applicable than white-box testing. A strengthened
RE-testing alignment could lead to benefits like improved
product quality [36], cost-effective testing [37, 38], high-
quality test cases [39], and early discovery of incomplete
requirements [40]. Our use of abstractions is to assist in
developing acceptance test cases, as will be shown in Sect. 6.

Since requirements are commonly documented in NL,
NLP techniques have been exploited to assist software test-
ing. Garousi et al. [41] reviewed 67 papers from 2011 to
2017 on NLP-assisted software testing and summarized
that the top-three exploited techniques were PoS tagging,
dependency parsing, and keyword checking. The more
recent work by Fischbach et al. [42] employed dependency
parsing to help identify causes and effects from a user story’s
acceptance criteria. Their empirical results show that the
NLP-assisted automated approach could generate 56% of the
test cases. The domain knowledge missed in the acceptance
criteria was a main reason that hindered the scope of NLP’s
assistance in testing. Our abstraction identification presented

Fig. 1   Understanding the focus of aligning RE and software testing in the context of the V-model (adapted from Unterkalmsteiner et al. [35])

409Requirements Engineering (2022) 27:405–427	

1 3

in Sect. 4 thus applies NLP to uncover domain knowledge
from relevant corpus.

3 � Environmental assumptions
and requirements‑based testing

Skoković and Skoković [43] introduced requirements-based
testing (RBT) to address two major issues in software quality
assurance: (1) validating the requirements are unambiguous,
consistent, and complete, and (2) designing a necessary and
sufficient set of test cases from a black-box perspective to
cover the validated requirements. Figure 2 shows the three
RBT activities, which we use iTrust’s4 “Schedule Appoint-
ments” requirement [44] to illustrate. Figure 3 displays a
snippet of this use case.

RBT’s first activity of requirements quality assurance
stands out from other traditional testing techniques. Not
only must the requirements be validated against the business
objectives, but an initial review shall be conducted to try to
find errors in requirements, such as ambiguity, incomplete-
ness, and inconsistency [45].

Given the validated requirements, the next RBT activity
is to design such black-box, logical test cases as to achieve
high test coverage of the requirements [43]. Designing and
reviewing logical test cases can help discover requirements
problems, e.g., E1, as currently stated in Fig. 3, is triggered
by a new appointment type’s name over 30 characters, or
by a duration unit not entered in minutes. However, S1
lacks information about whether the name and the duration
are mandatory at a new appointment type’s creation time.
Thus, the requirements can be clarified for better logical
test coverage.

The third RBT activity shown in Fig. 2 concerns execut-
ing tests by adding data to the logical test cases. Once all

Fig. 2   The RBT process flow (adapted from Skoković and Skoković
[43])

Fig. 3   Snippet of iTrust’s
“Schedule Appointments” use
case (adapted from [15])

4  iTrust is a Java application that provides patients with a means to
keep up with their medical records and to communicate with their
doctors [44].

410	 Requirements Engineering (2022) 27:405–427

1 3

of the tests designed according to the validated require-
ments execute successfully against the code, Skoković and
Skoković [43] argue that 100% of the functionality has been
verified and the code is ready to be delivered into production.

Despite RBT’s attentions paid to requirements, we
believe the process of Fig. 2 can be enhanced by two shifts,
both involving environmental assumptions. Note that the
shifts that we propose concern the second step of test case
design in Fig. 2. This shows a focused use of environmen-
tal assumptions in the RBT process. We do not apply the
assumptions to the first step of requirements quality assur-
ance in Fig. 2 because we take the requirements descriptions
directly from the software vendors. We currently perform
the step 3 of test execution in Fig. 2 manually and aim to
improve the test execution efficiency in future work. The
first shift that we propose over the RBT process of Fig. 2 is
revisiting the meaning of requirements, which is defined by
Jackson as [11]:

in which E , S , and R represent environmental assumptions,
specifications, and requirements respectively. Figure 4
depicts the conceptual distinction and overlap between the
environment and the machine (software-to-be). A customer
requirement R expresses a condition over the phenomena
of the environment that we wish to make true by install-
ing the machine, whereas an environmental assumption E
expresses a condition over the phenomena of the environ-
ment that we accept to be true irrespective of the properties
and behavior of the machine [11, 46]. The ⊢ among E , S ,
and R is an entailment, meaning that if a machine doing S is
installed in an environment having E , then we know R will
be fulfilled. Compared with validating R against business
objectives shown in the top activity of Fig. 2, Eq. (1) shifts
requirements validation toward the entailment relationship,
⊢ , to which E is integral.

In Fig. 4, P and C are private to the machine domain: P
denotes the program implementing the specification, and C
denotes the computing platform on which P runs. The cor-
rectness of a software implementation is given by Zave and
Jackson [46] and Gunter et al. [47] as:

(1)E,S ⊢ R

and we further denote the software under test (SUT) by
( P, C ) to indicate that software testing, including RBT, is to
stimulate P on C as a whole with concrete input data. From
Eqs. (1) and (2), we have:

deducing requirements validation in the absence of S.
The second shift that we propose to the RBT process

shown in Fig. 2 is to highlight the practical value of software
testing. Dijkstra famously said, “Testing shows the presence,
not the absence of bugs”5. We argue that searching for those
environmental assumptions and test inputs such that:

would be more valuable to RBT than trying to achieve a
100% test coverage against the requirements. Let us revisit
iTrust’s “Schedule Appointment” requirement in Fig. 3. Sub-
flow [S3] describes two branches after the patient enters the
requested appointment time: no time conflict with the LHCP
or otherwise. Two logical test cases can then be designed to
have both branches covered. However, an unstated assump-
tion about [S3] is that: “If a doctor’s appointment cannot be
made at the patient’s preferred time, the patient will accept
an alternative appointment time within 7 days of the pre-
ferred time.”

Making this assumption explicit allows us to construct
a concrete E (e.g., “a patient wants to know the options,
and possibly to schedule the appointment, beyond 7 days
of the unfulfilled, preferred time”) such that E , SUT ⊬ R ,
effectively showing the presence of a bug6 and potentially
provoking requirements changes. From this example and the
discussions of this section so far, we derive the desiderata
of the kinds of E that best support our revised RBT process:

–	 E shall be machine independent. Regardless of iTrust or
any other machine being the SUT, E is in the indicative
mood [11], expressing what is assumed to be true in the
environment.

–	 E shall be requirements related. Although E is inde-
pendent of the machine, it should not be indifferent to
R . Even for the same SUT, different requirements, in
principle, need different assumptions to support the RBT.

(2)P, C ⊢ S

(3)E, SUT ⊢ R

(4)E, SUT ⊬ R

Fig. 4   The environment is the part of the world with which the
machine (i.e., the software-intensive system) will interact (adapted
from Jackson [11] Zave and Jackson [46], and Gunter et al. [47])

5  https://​en.​wikiq​uote.​org/​wiki/​Edsger_​W._​Dijks​tra (last accessed on
2022/09/14 12:07:09).
6  By bug, we mean Eq. (4) is evaluated to be true (i.e., the entailment
relationship fails to hold) under a specific set of E , SUT , and R . We
refine the notion of bug in Sect. 6 by formulating the test oracle with-
out directly referring to R in order to address the distance between
observing the software executions and validating the stakeholder
goals.

https://en.wikiquote.org/wiki/Edsger_W._Dijkstra

411Requirements Engineering (2022) 27:405–427	

1 3

–	 E shall be directly testable. The E that gives rise to exe-
cutable tests is preferred. In addition to being closely
related to R , E shall induce as concrete test inputs as
possible to trigger the SUT.

–	 E shall be bug revealing. The practical value of show-
ing the presence of bugs implies that the RBT helps to
uncover flawed assumptions, faulty implementations, or
invalidated requirements.

Automatically generating E with all the desiderata from NL
documents is unrealistic [9], but the less ambitious goal of
assisting the discovery of problem domain properties is fea-
sible, as evidenced by abstraction identification in RE (cf.
Sect. 2.1). The next section presents our automated support
for identifying abstractions driven by the desiderata of E.

4 � Abstraction identification
for environmental assumptions

Figure 5 shows an overview of our NLP tool chain for
extracting and ranking abstractions. The candidate abstrac-
tions are then used to assist the human analyst in performing
the RBT. Our approach consists of three major steps: corpus
selection from Wikipedia, abstraction identification via NLP
patterns, and abstraction ranking according to the textual
similarity between the extracted abstractions and the NL
requirements of a software-intensive system. This section
uses iTrust [44], a software system helping to manage elec-
tronic health records, to illustrate our approach.

4.1 � Preprocessing

The data source that we use to identify the abstractions is
Wikipedia. The main rationale is to achieve the machine
independent property of the resulting abstractions. Wiki-
pedia is a vast online source of human knowledge that
describes the concepts across a wide range of domains.
These descriptions are independent from any specific soft-
ware solutions, and are indicative stating what is believed to
be true rather than what is wished to be true by introducing
a software solution. Additionally, Wikipedia is a text corpus
that collectively contains the current conventional wisdom

of the subject matters [48]. This ensures the descriptions are
less biased than individuals’ subjective opinions, e.g., tweets
or reviews about a software product.

To select a corpus for our purpose of abstraction identi-
fication, a seed page is required to anchor the domain inter-
ests. Our approach relies on the human analyst to provide
such a seed page. For iTrust, for example, the Wikipedia
page on “Electronic health records”7 is manually chosen as
the seed page, from which a corpus containing related pages
is derived. We build on Ezzini et al.’s recent work where
they used a domain-specific corpus for detecting require-
ments ambiguities [49]. While using a corpus that is too
small would be ineffective in recognizing significant terms
and their relationships, building and using a corpus that is
too large would be time-consuming and, more importantly,
would defeat the goal of being domain-specific [49]. In
Ezzini et al.’s work, 50–250 keywords were tested, and in
our work here, we empirically set the corpus’s size to be 250
Wikipedia pages.

To grow from the single seed page to the 250-page cor-
pus, we distinguish two kinds of Wikipedia pages: content
page introducing a topic and category page listing a set
of content pages that belong to a topic as well as the sub-
categories of the topic. Figure 6 illustrates the distinction:
the sub-figure to the left is a content page whereas the one
to the right is a category page, showing that “Electronic
health records” contain two sub-categories and 45 pages.
We further note the hyperlinks within each content page,
e.g., “health care” and “information systems” of Fig. 6a.
These links not only provide an efficient navigation mecha-
nism over the Wikipedia contents, but also represent some
semantic relationships between pages or categories [50]. Our
corpus is constructed with the following procedure: While
the total number of pages is less than 250,

1.	 Add the manually identified seed page, resulting in the
“Electronic health records” corpus size to be 1 page;

Fig. 5   Components of the NLP-aided abstraction identification approach

7  https://​en.​wikip​edia.​org/​wiki/​Elect​ronic_​health_​record (last
accessed on 2022/09/14 12:07:09).

https://en.wikipedia.org/wiki/Electronic_health_record

412	 Requirements Engineering (2022) 27:405–427

1 3

2.	 Add all the content pages belong to the seed page’s
topic, making the corpus’s size grow to (1+44) = 45
pages;

3.	 Add all the content pages belonging to the sub-catego-
ries of the seed page’s topic, leading to a (45 ± 30 ± 30)
= 105-page corpus; and

4.	 From the already added content pages, add the Wikipe-
dia content pages of the hyperlinks before each page’s
structured table of contents (cf. Fig. 6a). The reason that
we include into our corpus only the hyperlinked pages
before the table of contents is because these topics pro-
vide substantial background information for the main
topic of interest. We operate 4) based on when a page is
added by following the above 1), 2) and 3) ordering, till
a total of 250 Wikipedia pages is reached.

We implemented our page selection logic by using the Beau-
tiful Soup Python library [51]. Our Python-based corpus
builder also ensured that no duplicate Wikipedia page was
selected. Once the corpus’s 250 pages were chosen, Fig. 5
shows that data cleansing, tokenizing, and sentence splitting
would take place. For each page, our data cleansing removed
the figures and the formatting information (e.g., table of con-
tents). Following prior work [52, 53], we then applied spa-
Cy’s tokenizer [54] to break each page into tokens: words,
numbers, punctuation marks, or symbols. Finally, we used
spaCy’s sentencizer [54] to split the text into sentences
based on conventional delimiters (e.g., period).

4.2 � Extracting abstractions

We process each sentence from the selected Wikipedia pages
in order to find directly testable abstraction candidates. We
operationalize testability by formatting an abstraction as a
<key, value> pair. This hash structure is intended to separate

a domain concept (key) from its manifestation (value).
We expect the “key” to help locate “what to test”, and the
“value” to guide “how to test it” by feeding in concrete data.

Building on the NLP-based abstraction identification
approaches [2, 3], we define five patterns by exploiting
the syntactic and grammatical roles that words play in a
sentence. Figure 7 lists these patterns. Note that Gacitua
et al. [1, 3] used two PoS patterns—adjectives and nouns
and adverbs and verbs—to identify abstractions; however,
the two PoS patterns of our approach, PoS_P1 and PoS_P2
shown in Fig. 7, consider <key, value> explicitly.

Dependency parsing [55] is the task of identifying
the grammatical structure of a sentence by determining
the linguistic dependencies between the words based on
a pre-defined set of dependency types. For example, in
the sentence: “The system shall refresh the display”, “dis-
play” is the direct object (dobj) of the main verb “refresh”
whereas “shall” is the auxiliary verb (aux) adding modal-
ity to the main verb. Dalpiaz et al. [56] recently exploited
dependency parsing to classify functional and non-func-
tional requirements. Although our objective is to identify
abstractions, we believe dependency parsing, just like PoS
tagging, can constitute an effective NLP toolset that offers
deep domain understandings [2]. We detail each of the five
patterns as follows:

–	 PoS_P1 extracts the NN or NNS that precedes the
parentheses as key, and the content inside the parenthe-
ses as value. Cohen et al. [57] showed that the paren-
thesized material in biomedical text often contains data
value or list element useful for information extraction,
which we also observe in Wikipedia pages. This pattern
therefore extracts <“adult”, “age 15 +”> from S1 of
Fig. 7.

Fig. 6   Sample content page (used in our domain corpus) and sample category page (used to find more content pages to be included in the cor-
pus)

413Requirements Engineering (2022) 27:405–427	

1 3

–	 PoS_P2 leverages a common lexico-syntactic way of pro-
viding examples [58] so as to identify the NN or NNS to
be a key, and the hyponym(s) [59] following “such as” to
be its value(s). The pattern thus outputs <“identifiers”,
“name” “addresses” “social security numbers”> as
an abstraction candidate for Fig. 7’s S2.

–	 DP_P1 recognizes the nominal subject (“nsub”) or the
subject’s compound (“compound”) as a key, and the par-
allel NN’s after the main verb “include” (or “includes”)
as values. Different from the “such as” pattern used in
PoS_P2, “include” signals a part-whole relationship [60],
listing several concrete facets of the concept. In Fig. 7’s
S3, <“practitioner risk factors”, “fatigue” “depression”
“burnout”> is identified as an abstraction candidate.

–	 DP_P2 treats the nominal subject as a key in the same
manner as DP_P1; however, its value is extracted based
on the sequence of “NN, IN, and CD” appearing after the
main verb. DP_P2 is informed by Dalpiaz et al.’s find-
ing that “IN and CD” often distinguished requirements
types [56]. For S4 of Fig. 7, DP_P2 uncovers <“fever”,
“temperature of 37.8◦ ”> as a candidate pair.

–	 DP_P3 also considers the nominal subject to be a key,
with the value identified via the NN that follows the main
verb and that is modified by an adjectival (“amod”),
nominal (“nmod”), or numeric (“nummod”) modifier.
Finin [61] noted that modifier takes a head concept and
a potential modifying concept and produces a set of pos-
sible interpretations, which we adopt to derive DP_P3.
According to this pattern, <“user’s location”, “personal
information”> is recognized from S5 of Fig. 7.

The above set is by no means an exhaustive list of gram-
matical features that must be associated with environmen-
tal-assumption statements, but a means of automatically
extracting directly testable abstractions. The NLP patterns
are informed by the relevant literature [56–61] and further
realized by our PoS tagging and dependency parsing imple-
mentations built on top of the open-source spaCy library
[54] written in Python. We also made the implementations
of our preprocessing and NLP steps publicly available on
Google Colab [62], facilitating the users to identify abstrac-
tions according to our approach inside their web browsers.

4.3 � Ordering abstractions

So far, our approach processes information related to a
domain, e.g., Electronic health records. To ensure that our
abstraction identification is requirements related, we use
the NL requirements of each specific product [63] to rank
the abstraction candidates. In this way, even though some
software-intensive systems are in the same domain, their
ranked abstractions will be different due to the differences
of the requirements at the product level.

Given a product’s requirements R={ r1 , r2 , ..., rm } , e.g.,
iTrust’s 54 use cases, we first compute the cosine similarity
measure between a candidate abstraction (abst) and R with
TF-IDF weighting [64–66]:

(5)cosine(abst,R) =

m
∑

i=1

cosine(abst, r
i
).

Fig. 7   Illustration of our five patterns for identifying <key, value>
abstractions in a sentence. PoS (part-of-speech) tags shown here
include: “NN” (noun, singular), “-LRB-” (left round bracket),
“-RRB-” (right round bracket), “NNS” (noun, plural), “JJ” (adjec-
tive), “VBP” (verb, non-3rd person singular present), “VBN” (verb,

past participle), “IN” (preposition), “CD” (cardinal number), and
“POS” (possessive ending). Dependency parsing types shown here
include: “compound” (noun compound modifier), “nsubj” (nominal
subject), and “amod” (adjectival modifier)

414	 Requirements Engineering (2022) 27:405–427

1 3

Note that R can be a set of selected requirements, or even a
single requirement of interest. We then rank all abstraction
candidates by their cosine similarity scores in a descending
order.

5 � Evaluating the effectiveness
and relevance of identified abstractions

This section presents a comprehensive evaluation of our
abstraction identification approach, comparing its perfor-
mance with the effectiveness of a state-of-the-art tech-
nique: relevance-based abstraction identification (RAI)
[1]. Furthermore, to assess relevance, we examine the
resulting abstractions’ matching with manually created
environmental assumptions, as well as their capabilities
of revealing software defects. We answer three research
questions (RQs) in this section by investigating the effec-
tiveness (RQ1), partialness (RQ2), and bug revealingness
(RQ3) of the produced abstractions. All our experimental
materials are publicly available at https://​doi.​org/​10.​5281/​
zenodo.​58583​84 (last accessed on 2022/09/14 12:07:09).

5.1 � Domains and subject systems

We chose to study two domains, Electronic health records
and Web conferencing, due to our familiarity with them
and the availability of software applications in them. We
ran our Python-based preprocessing steps in February
2021. Table 1 shows that, when we manually selected
https://​en.​wikip​edia.​org/​wiki/​Elect​ronic_​health_​record
and https://​en.​wikip​edia.​org/​wiki/​Web_​confe​renci​ng (both
links last accessed on 2022/09/14 12:07:09) to be the seed
page respectively, a total of 33,988 and 43,744 sentences
were collected. In both domains, the selected 250 Wiki-
pedia pages were within 3 category depths of each other,
implying these pages’ topical closeness [67]. The five NLP
patterns’ applicability ranged from 1.8% to 51.2% of the
sentences. In both domains, DP_P3 had a wide influence,
showing that many Wikipedia sentences have described
the nominal subject (“nsub”) with adjectival, nominal, or
numeric modifiers.

Table 1   Domain and subject
system characteristics

Electronic health records Web conferencing

of sentences 33,988 43,744
Category depths 3 3
(%) of sentences to which a pattern applies

requirements
PoS_P1 5437 (16.0%) 4553 (10.4%)
PoS_P2 1962 (5.8%) 1182 (2.7%)
DP_P1 2133 (6.3%) 785 (1.8%)
DP_P2 3236 (9.5%) 2945 (6.7%)
DP_P3 17,393 (51.2%) 15,973 (36.5%)
of product-level requirements 54 (iTrust) 49 (Teams)

27 (OpenEMR) 26 (Webex)
39 (OpenMRS) 31 (Zoom)

Fig. 8   Sample NL requirements of Zoom

https://doi.org/10.5281/zenodo.5858384
https://doi.org/10.5281/zenodo.5858384
https://en.wikipedia.org/wiki/Electronic_health_record
https://en.wikipedia.org/wiki/Web_conferencing

415Requirements Engineering (2022) 27:405–427	

1 3

We selected three software applications for each chosen
domain. Table 1 lists the number of NL requirements for
these applications. In addition to iTrust, we investigated
two open-source medical record systems: OpenEMR [68]
and OpenMRS [69]. OpenEMR is one of the most popular
electronic medical records in use today with over 7,000
downloads per month, and its project repository lists 27
features, such as patient scheduling, prescriptions, and
medical billing [70]. OpenMRS allows for customizable
electronic medical record systems to support the delivery
of health care in developing countries; 39 requirements are
introduced in OpenMRS’s user guide [71], including view-
ing and creating patient records, patient dashboard, etc.

Web conferencing has become one of the most preva-
lent and useful tools due to the COVID-19 pandemic. We
studied three popular products: Zoom, Cisco Webex, and
Microsoft Teams. While our experimental materials list all
the product-level requirements and the online resources from
which we collected the requirements, Fig. 8 shows a few
Zoom features.

5.2 � Effectiveness of abstraction identification

As did Gacitua et al. [1], we measure abstraction identifica-
tion’s effectiveness by precision and recall. In addition to our
<key, value> pair (KVP) abstractions, we also experimented

with RAI, which uses corpus-based frequency profiling to
compute the log-likelihood (LL) value for a word w [1]:

in which w
d
 is the number of times w appears in the domain

documents of the 250 Wikipedia pages, and w
r
 is the number

of times w appears in the product-level requirements. While
w
d
 and w

r
 are observed values of w, E

d
 and E

r
 in Eq. (6) are

expected values: E
d
=nd ⋅(wd+wr)

nd+nr
 and E

r
=nr ⋅(wd+wr)

nd+nr
 , where n

d
 is

the total number of words in the domain documents, and n
r

is the total number of words in the product-level require-
ments. We ranked the single-word abstraction candidates in
the ascending order of LL

w
 to obtain testable constructs: the

smaller is LL
w
 , the significance of w in domain documents

is closer to that of w in product-level requirements, making
w’s ranking closer to the top. The multiword abstraction can-
didates were recognized by the adjectives and nouns and
adverbs and verbs PoS patterns, and then ranked by an
aggregated LL for the multiword unit [1].

Table 2 presents a comparison of RAI and our approach.
Due to space constraints, we show only the top-ten abstrac-
tion candidates of iTrust and OpenEMR from the healthcare
domain. To quantitatively and practically evaluate different
abstraction identification techniques, we measured preci-
sion of the topmost 20, 100, and 200 results. Sawyer et al.
[2] hypothesized that human analysts would be reluctant to

(6)LL
w
= 2 ⋅

(

w
d
⋅ ln

w
d

E
d

+ w
r
⋅ ln

w
r

E
r

)

Table 2   Top-ten abstraction
results of iTrust and OpenEMR
by RAI [1] and by Our <Key,
Value> Pair (KVP) approach

Rank iTrust OpenEMR
RAI KVP RAI KVP

1 cardiac <“factors”, subsequent <“identifier type”,
causes “vascular damage”> recovery “uniform”>

2 healthcare <“factors”, subsequent <“cell type”,
“pathogens” “dysfunctions”> amendment “cytokines”>

3 security <“factors”, subsequent <“type”,
“mental protection”> surgical “pharmacologic”>

4 natural <“safety checks”, subsequent <“procedure”, “patient id”
causes “potential dose”> complications “name” “sex” “age”>

5 reversible <“x - rays”, ambulatory care <“term”,
causes “absorbed dose”> pharmacists “patient type”>

6 annual <“rash”, surgical <“type”,
meeting “adverse reaction”> nurses “type private”>

7 pediatric <“dose”, specific <“product type”,
radiology “equivalent dose”> patient types “type stage”>

8 biological <“stage”, dynamic nuclear <“symptoms”, “shortness
causes “ideal dose”> polarization breath” “chest pain”>

9 preventable <“radiation dose”, initial tomography <“type”,
causes “average dose”> acquisition “additional type”>

10 itchy <“radiation dose units”, chest <“type”,
rash “dose units”> pain “type college”>

416	 Requirements Engineering (2022) 27:405–427

1 3

explore a long list of abstraction candidates and used the 20
highest ranked candidates to simulate the hypothesis. Gaci-
tua et al. [1] evaluated the topmost 200 candidates as a prac-
tical upper bound. Therefore, we also computed recall@200
without exceeding this limit.

The answer set for each subject system was constructed
by two researchers: first individually and then jointly to
resolve discrepancies. Cohen’s kappa before the joint meet-
ing was 0.57, signifying a moderate level of inter-rater
agreement. The main challenge was to handle abstractions
with varying lengths yet overlapping partially, e.g., in iTrust,
RAI’s 153rd output was “medical imaging”, and our 31st
pair was <“medical imaging”, “time”>. The research team
decided to unify these candidates with shortest-common-
supersequence [72], i.e., creating one element of “medical
imaging time” in the answer set and then using ‘contained
in’ to establish a match. In this way, RAI’s 153rd and KVP’s
31st outputs were considered as matching the answer set’s
element of “medical imaging time” because both candidates
were ‘contained in’ that element. Note that the ‘contained
in’ match was not ordered, so “time medical” would be a
match, too. The two researchers collaboratively defined the
answer set for each subject system based on their individual
judgments and the shortest-common-supersequence unifying
step. A third researcher reviewed and agreed on the answer
sets, which we share as a part of our experimental materials.

Figure 9 plots the average precision and recall among
the three systems in each domain. When considering pre-
cision, we note that KVP outperforms RAI. Such effects
are observed more prominently in the healthcare domain
than web conferencing. One reason may be the relatively

homogeneous domain concepts in web conferencing; in
contrast, healthcare covers wider domain phenomena, e.g.,
symptoms, health conditions, and treatments. Given that a
precision over 25% represents practically achievable good
abstraction identification performance [2], both methods
perform well at Precision@20 in the healthcare domain;
however, KVP also performs well at Precision@20 in web
conferencing and even at Precision@100 in healthcare.

We offer a couple of qualitative insights into the perfor-
mance differences. First, KVP is contextually richer than
RAI. In iTrust, RAI outputs “blood pressure” as its 45th
candidate, a rather general concept. A relevant KVP gener-
ated by our approach is the 98th candidate: <“blood pres-
sure”, “140”>, depicting a testable and indicative domain
phenomenon, i.e., 140 mm Hg or above implies Stage 2
high blood pressure. Our second observation is that KVP
tends to group relevant domain phenomena which are spread
out otherwise. In OpenEMR, for instance, <“symptoms”,
“shortness breath” “chest pain”> is ranked 8th. RAI, on
the other hand, recognizes “chest pain” as its 10th candidate
and “shortness breath” as its 352nd candidate. The distance
is so large that the two candidates are unlikely to be related
with one another. As shown in Fig. 9, KVP’s Recall@200
reaches about 60% in both domains, covering more relevant
domain phenomena than RAI.

5.3 � Comparison with manually formulated
assumptions

To gain further insights into abstractions’ completeness,
we compare them with manually created environmental

Fig. 9   Accuracy of candidate
abstractions

417Requirements Engineering (2022) 27:405–427	

1 3

assumptions. Our comparison is twofold: matching the 150
iTrust assertions studied by Bhowmik et al. [15], and match-
ing the 8 meeting scheduler assumptions shared by Rahimi
et al. [24]. In both cases, two researchers manually extracted
the gists of the iTrust assertions and the meeting scheduler
assumptions, and then matched the automatically generated
abstractions with those gists in a joint session.

Table 3 shows the coverage results of iTrust. As the envi-
ronmental assertions in [15] are about iTrust’s “Schedule
Appointments” use case (cf. Fig. 3), we used only this use
case’s NL descriptions, instead of the NL requirements of
all 54 iTrust’s use cases, to rank the automatically generated
abstraction candidates. Inspecting the top-200 abstractions
identified by RAI and our KVP led to a 50% and 62.5%

coverage over the eight gists listed in Table 3. For instance,
“valid user account” was covered by RAI’s 89th candidate
(“valid patient”) and KVP’s 59th candidate (<“user”, “valid
patient”>). Compared to RAI, KVP had the highest cover-
age. Notably, the 142nd KVP, <“respondents”, “regular
patients”>, corresponded to the assertion that the respond-
ents (e.g., a licensed health care professional) shall approve
or deny the patients’ requests for appointment. Such an
assertion was not covered by any of the top-200 candidates
generated by RAI.

In a study on environmental assumptions, Rahimi and
her colleagues [24] collected 150 statements from the litera-
ture: textbooks, papers, and websites. From this collection,

we selected all the assumptions of the meeting scheduler
domain. These eight statements, shown in the leftmost col-
umn of Table 4, were taken from van Lamsweerde [12].
The rest of Table 4 provides the top-ranked, relevant KVP
identified by our approach that matched the assumption.
Although some statements are idiosyncratic, such as “Sat-
urdays are excluded dates for meetings”, no KVP within the
top-200 abstractions was found to be relevant to the gist of
not scheduling meetings on some special date. Overall, the
coverage of the eight meeting scheduler assumptions [12] is
58.3% ( 14

24
 ). A noteworthy finding is that, even for the same

assumption, different abstractions are identified for different
software products, enabling more specialized testing for each

Table 3   Coverage of the eight gists of the environmental assertions
about iTrust’s “schedule appointments” use case [15]

Gist RAI KVP

Valid user accounts
√ √

Valid appointment time
√ √

Valid appointment type
Unique patient account

√ √

Valid schedule alternatives
Designated LHCP
Responding to appointment requests

√

Displaying patient message
√ √

Table 4   Top-ranked <Key, Value> pair matching meeting scheduler’s environmental assumptions (“--” means no relevant pair was found
within the top-200 abstraction candidates to match the assumption)

Environmental assumption Teams Webex Zoom

A participant cannot attend multiple meetings at the
same time

67th: <“offline attacks”, 29th: <“shared password, 59th: <“addition users”,

“multiple user accounts”> “another person citation”> “passwords bookmarks”
“history” “cookies”>

Participants will promptly respond to e-mai
requestsl

58th: <“e-mail”, -- --

“Microsoft 365 Business Basic”>
A participant is on the invitee list if & only if he or

she is invited to that meeting
-- -- 188th: <“user”,

“required path”>
A meeting is scheduled if & only if its time and

location are set
5th: <“meetings”, 133rd: <“meeting”, 15th: <“meetings”, “up to

“Microsoft Teams”> “time meeting”> 100 devices” “40-minute
time restriction”>

A meeting is scheduled only if it is requested. -- -- --

Saturdays are excluded dates for meetings -- -- --

Confidentiality rules can prevent non-privileged 181st: <“messenger rooms”, 155th: <“server hosts”, 153rd: <“security”,
participants being aware of constraint “limit participant of 50”> “private sharing”> “unauthorized person”>
Confidentiality rules can prevent non-privileged 173rd: <“access control list”, 165th: <“person meeting”, 129th: <“ip address”,
participants being aware of meetings “OneDrive folder”> “private meeting”> “host identification”>

418	 Requirements Engineering (2022) 27:405–427

1 3

system, e.g., checking if a participant who is excluded from
the “access control list” in the “OneDrive folder” could join
a Teams meeting, or “ip address” should authenticate “host
identification” in Zoom.

5.4 � Bug revealing capability of abstractions

As we discussed in Eq. (4), revealing bugs shows the practi-
cal value of the abstractions in the RBT process. Among
our six subject systems, we focused on the known bugs
of iTrust, Teams, Webex, and Zoom. Bhowmik et al. [15]
highlighted two defects of iTrust discovered manually in the
RBT process. In our analysis, both bugs could be revealed
with support of the KVP results. We manually judged which
abstractions, if known to the testers, could help detect the
bugs. We found that the 139th pair, <“appointment”, “last
year”>, could help uncover the bug that iTrust allowed an
appointment to be made for a past time, and the 79th pair,
<“time”, “scheduling conflicts”> could help detect the
bug that iTrust allowed a patient to schedule appointments
with multiple doctors at the same time.

Our manual web search found 7 bugs for Teams, 5 bugs
for Webex, and 7 bugs for Zoom, all of which are shared in
our experimental materials. Analyzing the top-200 KVPs
manually, we were able to use the abstractions to help reveal
3 Teams’s bugs (43%), 2 Webex’s bugs (40%), and 2 Zoom’s
bugs (29%). For example, Teams’s 162nd pair was <“meet-
ing organizer”, “repetition occurrence meeting”>, help-
ing to define a path of RBT as follows:

1.	 Scheduler organizes a daily meeting series;
2.	 Scheduler invites a guest to join only on day #3;
3.	 Guest accesses the meeting series’s text chats on day #4.

If the assumption at step 2) is one-time invitation only, then
step 3) is expected to fail. However, step 3) was success-
ful in Teams, because Teams assumed the guest invitation
was from day #3 onward. Constructing the above testing
path also needs the deep understanding of inviting a guest
to a “repetition occurrence meeting”. This emphasizes that
the automatically identified abstractions are supporting the
human analysts, rather than replacing them, in performing
RBT. Nevertheless, our 65th KVP, <“sharing feature”,
“video sharing” “audio sharing” “desktop sharing”
“file sharing” “whiteboard sharing” “text sharing”>,
clearly suggests some new testing paths similar to the above,
where step 3) can concentrate on guest’s access to day #4’s
uploaded files or day #4’s shared whiteboard. In fact, Teams
provides separate entry points to chats, files, and white-
boards. Resolving guest’s chat access does not resolve the
file or whiteboard access. Thus, related KVPs can improve
the efficiency of uncovering related bugs.

5.5 � Threats to validity

A threat to construct validity is that our answer set’s building
adopted shortest-common-supersequence [72] in order to
unify the abstractions identified by different techniques. This
caused the matching between abstraction candidates and
answer set elements to be judged on a ‘contained in’ basis,
which must be taken into account when interpreting our
reported recall and precision values. Another threat is that
our assessment of the bug revealing capability of abstrac-
tions is only speculative in this work. In the next section, we
offer a refined interpretation of bug revealingness thereby
improving the testing’s objectiveness.

We believe the internal validity is high in that the factors
potentially affecting the abstractions’ accuracy, coverage,
and bug revealingness measures are under our direct con-
trol. This makes the abstraction identification techniques the
cause of observed differences. One factor worth noting is
that we ran our Python-based preprocessing steps in Febru-
ary 2021 in order to collect the 250 Wikipedia pages for each
domain; however, the collected pages affected both tech-
niques. The comparison results between RAI and our KVP
approach therefore remain valid. In addition, our Google
Colab tool [62] helps mitigate this limitation in that the users
can identify up-to-date abstractions in a dynamic fashion.

Our evaluation results may not generalize to other sub-
ject systems or other domains, a threat to external validity.
Studying more software applications within and beyond
Electronic health records and Web conferencing will be val-
uable. Another threat here is our reliance on Wikipedia for
abstraction identification. From a computational linguistic
point of view, Wikipedia provides a balance in size, qual-
ity, and structure, between the highly-structured, but lim-
ited in coverage, linguistic databases like WordNet, and the
large-scale, but less-structured, corpora such as the entire
Web [48]. Nevertheless, using other corpora, including
user forums [73], or combining Wikipedia with additional
NLP support like WordNet could be interesting directions
to expand our work.

6 � Feature testing in opposing
environmental conditions

Building on the identified abstractions, we present in this
section a new way to perform RBT by targeting a software
system’s changing features. To that end, we first revisit the
notion of bug and point out the distance of software testing
and requirements validation in Sect. 6.1. We then review
the use of finite state machines to design acceptance test
cases in Sect. 6.2, articulate our feature testing approach
in Sect. 6.3, demonstrate the extended support from the
abstractions in Sect. 6.4, and discuss the implications of

419Requirements Engineering (2022) 27:405–427	

1 3

environment-driven, abstraction-supported feature testing
in Sect. 6.5.

6.1 � Revisiting bug revealingness

We previously interpreted bug in RBT according to Eq.
(4), i.e., the SUT, once executed, fails to entail R . In prac-
tice, this view faces some challenges. Let us revisit the
Teams’s bug of inviting a guest to join a recurring meet-
ing series. For the stakeholders who want the guest to join
at a certain point in time and onward, Teams’s current
implementation would not be buggy, i.e., E, SUT ⊢ R for
this group of stakeholders. Yet, for those who want the
guest invitation to be valid for one time and one time only,
a solution could be using Teams to schedule a separate,
standalone meeting with the guest and the regular attend-
ees without resorting to the recurring series at all. Then,
E, SUT ⊢ R also holds for the one time only guest invita-
tion scenario, and hence no Teams’s bug would be found.

Clearly, two different features of the SUT are involved:
inviting guest to a recurring meeting series and scheduling
a standalone meeting. Since different features help satisfy
different, and in this example, diverging goals, recogniz-
ing which feature to test is important to RBT. In another
word, being requirements related means choosing the right
feature to test. Besides feature selection, another challenge
of RBT’s bug revealingness lies in the inherent distance
between testing a feature and reasoning about a require-
ment’s fulfillment. For Teams’s features, whether meet-
ing with a guest in a recurring series or in a standalone
meeting, a direct observable is the outcome of the actual
scheduling, i.e., whether the intended meeting with the
right parties is successfully scheduled or not. However, the
requirements-level concern here is the extent to which the
guest is permitted to access the shared information, such
as files and chats. In fact, inviting the guest to a meeting
series or an individual meeting may result in a pass if the
test oracle (i.e., expected outcome) hinges on scheduling
confirmation. A gap exists between observing a meeting’s
scheduling confirmation and guarding the guest’s permis-
sible access to the sharables.

To further illustrate this gap, let us also revisit the
iTrust’s bug which allowed a patient to schedule appoint-
ments with multiple doctors at the same time [15]. From
the patient’s perspective, the requirement R might be:
“to consult with the family doctor and other epidemiol-
ogy experts about the holiday travel under the wide and
quick spread of Omicron”. Note that this R is optative and
refers to only the private phenomena of the environment.
The R is fulfilled if the consultation actually happens and
the patient receives proper travel advice. Therefore, even
though iTrust’s buggy implementation allowed multiple
doctor’s appointments to be made, the patient’s R could

still be satisfied, e.g., by consulting with the multiple
doctors over a Teams’s virtual session. In this example,
iTrust’s appointment-scheduling feature exhibits a non-
negligible distance to the validation of R . The buggy
implementation of iTrust, according to [15], turns out to
be capable of meeting the patient’s needs.

In summary, there exist a couple of challenges of inter-
preting bug based on the failure of requirements fulfill-
ment: (1) choosing the right feature to test and (2) address-
ing the gap between software testing and requirements
validation. Before presenting our approach to tackling
these challenges in Sect. 6.3, we review the existing way
of using state machines to design acceptance test cases.

6.2 � Acceptance test cases

Hsia et al. [74] were among the first to link acceptance
testing and requirements engineering. They introduced
scenario analysis in which requirements analysts manually
constructed a finite state machine for the user or customer
view. For illustrative purposes, we manually built a finite
state machine model for iTrust’s Schedule Appointments use
case (cf. Fig. 3), and our model is shown in Fig. 10.

The finite state machine formalism helps to system-
atically generate acceptance test cases. From Fig. 10, for
instance, we could derive the test cases, such as [e1], [e2],
and [e1◦e3] . The formalism encapsulates the logical test
case design advocated by Skoković and Skoković [43]. The
literature also distinguishes positive test cases from nega-
tive ones, e.g., [e1] over Fig. 10 tests the positive outcome
of adding a new appointment type, whereas [e2] tests the
negative outcome. Having both positive and negative tests is

S1

S2

e1: “annual
physical”

E1

e2: “c1c2
…c31”r1: “try

again”

E2

e4: “ ”r2: “No
comment”

S3

e3: “A
comment”

S4

e5:
“6/1/22”

S5

e6:
“5/31/22”

r3: “6/1/22”
 “6/2/22”
 “6/3/22”

Fig. 10   Modeling iTrust’s Schedule Appointments use case (cf.
Fig. 3) with a finite state machine in which the additional states “S4”
and “S5” represent “request is saved” and “time conflict is detected”
respectively. The transition is labeled with “e” (user-entered input) or
“r” (system-generated response)

420	 Requirements Engineering (2022) 27:405–427

1 3

important for acceptance testing [42, 75]. However, we argue
that both types are about what is desired from the imple-
mented software: desired to confirm a success or desired
to throw an exception. Such a desire is what the optative
S shows in Fig. 4 and is defined only within the machine
boundary. Next, we explore a new way to inject E explicitly
into a feature’s acceptance testing.

6.3 � Testing software’s changing features

In a rapidly evolving technological landscape, many software
vendors seek to test and launch their products and services
continuously. For example, Cisco released 27, 16, 22, and 25
Webex features in August, September, October, and Novem-
ber of 2021, respectively [76]. One of August’s changing fea-
tures is to adjust camera brightness. Figure 11 shows Cisco’s
description of this feature, from which the texts introduce the
functionalities (i.e., automatic and manual adjustments), how
to invoke them in the software (e.g., checking the box, a slider
control, etc.), and the constraints (e.g., the software feature’s
dependency on Hardware Acceleration for video). The picto-
rial part of Fig. 11, which is only optional to feature descrip-
tion, helps illustrate the invocation, operation, and expected
behavior of the functionalities.

Our current work focuses on testing the changing features
like Webex’s adjusting camera brightness. This is because not
only that a feature represents the increment of functionality

and hence a coherent S of the software, but also that the new
code associated with the changing feature tends to have more
bugs and be less well tested for edge cases [77]. Performing
the RBT on the changing feature, rather than on the software as
a whole, addresses the challenge of choosing the right feature
to test discussed in Sect. 6.1. To address the other challenge
of testing’s distance from validating R , we define the oracle
as follows:

in which ( E , ¬ E ) consists of a pair of opposing environ-
mental conditions. Compared to Eq. (4), this formulation
eliminates the need for R and also pins down the unit of
testing to a specific feature. Intuitively, Eq. (7) asserts that
the same feature would behave differently when tested in an
opposing pair of conditions, i.e., we expect the behavior of
the feature observed in E to be different from the behavior
of the same feature observed in ¬ E . Note that the test oracle
of Eq. (7) always compares two executions of a particular
feature, instead of expressing the anticipated outcome of that
feature in a solo condition.

To better understand the feature testing approach char-
acterized by Eq. (7), we consider Webex’s adjusting cam-
era brightness feature introduced in Fig. 11 and identify a
relevant ( E , ¬ E ) pair to be (“the user is in a bright room”,
“the user is in a dark room”). Both E and ¬ E refer to the

(7)E, feature ≠ ¬ E, feature

Fig. 11   Adjusting camera brightness feature of Webex [76]

421Requirements Engineering (2022) 27:405–427	

1 3

indicative, private phenomena of the environment [11]; how-
ever, they represent the opposing ends of a locational facet
of the user of Webex, or more specifically, the user of the
“adjusting camera brightness” feature. Following Eq. (7),
we expect (“the user is in a bright room”, “adjusting camera

brightness”) to behave differently from (“the user is in a
dark room”, “adjusting camera brightness”), which serves
as the oracle of our RBT. Carrying out the actual testing
with the guidance of this oracle is straightforward. Figure 12
shows the testing results. From the standpoint of seeing the

Fig. 12   Results of testing Webex’s adjusting camera brightness feature

422	 Requirements Engineering (2022) 27:405–427

1 3

user more clearly, we could conclude that “adjusting camera
brightness’ in E (cf. Fig.12a) has a different effect compared
to observing the same feature’s outcome in ¬ E (cf. Fig. 12b).
The testing results thus support the oracle of Eq. (7).

What this example shows can be regarded as a confirmed
boundary condition, which, if known before the feature’s
deployment, could better inform the end users about their
expectations of the newly released functionalities of the soft-
ware. For instance, an additional constraint might be inserted
into the feature description of Fig. 11 to state that the adjust-
ing camera brightness feature does not work well in a dark
environment. Furthermore, making the feature work well in
¬ E can be added to the backlog as a new requirement, allow-
ing the developers to improve the capabilities of the software
and to make innovations in their product. The software fail-
ure here—its inability to display the user more clearly—is
uncovered unexpectedly with respect to the development
team and yet purposefully by our approach. Hence, our
environment-driven feature testing is capable of revealing
bugs that drive continued innovation.

6.4 � Quantitative analysis

To provide automated support for the feature testing
approach of Sect. 6.3, we follow the process of Fig. 5 to
generate a ranked list of abstractions in the form of <key,
value> pairs. The abstraction ranking is performed by cal-
culating the cosine similarity with TF-IDF weighting (cf.
Eq. 5) between each abstraction candidate and a given fea-
ture’s NL description. Our current NLP support does not

consider the pictorial part but only the NL part of a fea-
ture’s description (cf. Fig. 11). As our feature testing oper-
ates on E and ¬ E according to Eq. (7), we treat the identified
abstraction as E , and add a new NLP method to automati-
cally search for ¬ E of a given E . Our implementation makes
use of WordNet’s antonyms() function as part of Python’s
NLTK package [78]. This function returns a set of antonyms
for a single English word if they exist in WordNet’s lexical
database. Previous work leveraged this function for various
purposes, e.g., Lilian et al. [79] identified antonyms for the
adjective in a word embedding model, and Killawala et al.
[80] produced all possible antonyms and synonyms for the
given word to develop a framework to automate the process
of quiz and exam question generation.

Inspired by the previous work, we compute the antonyms
for key and for value separately from the abstractions that we
identified in January 2022. Table 5 illustrates the resulting
antonyms of the top-10 abstractions for Webex’s side-by-
side mode for dual camera support feature released by Cisco
in August 2021 [76]. The NL description of this feature is:
“Users can share live content through the back camera of
their device while remaining a video participant through the
front camera of their device. When users use Side-by-Side
mode for dual camera, their front and back camera video
is combined to one video side by side. The other meeting
participants see the participant video that placed the user’s
front video and back video side by side at the same time.” As
shown in Table 5, more antonyms are found for values than
for keys; this trend generally holds in our experimentation
of Webex’s new and changing features. For each identified
antonym, we automatically form ¬ E in the <key, value>

Table 5   Antonyms of the top-
10 abstractions of Webex’s side-
by-side mode for dual camera
support 

Rank Abstraction Antonyms of key Antonyms of value

1 <“side”, “human side”> “bottom”, “top” “nonhuman”, “bottom”, “top”
2 <“side”, “short side”> “bottom”, “top” “retentive”, “long”, “tall”,

“bottom”, “top”
3 <“side”, “left side”> “bottom”, “top” “center”, “right”, “bottom”,

“top”
4 <“side”, “right side”> “bottom”, “top” “wrong”, “center”, “left”, “in-

correct”, “bottom”, “top”
5 <“video camera”, “pro- -- “unprofessional”, “nonpro-

fessional camera”> fessional”
6 <“video camera”, -- “analog”

“digital camera”>
7 <“effect”, “back side”> -- “forward”, “front”, “bottom”,

“top”
8 <“hand”, “hand camera”> -- --

9 <“video”, “quality video -- --

at 2”>
10 <“video interpreting”, -- “dead”, “recorded”

“live video”>

423Requirements Engineering (2022) 27:405–427	

1 3

pair. For example, only one ¬ E exists for the 6th pair in
Table 5, which is <“video camera”, “analog camera”>.
Note that our ¬ E construction replaces key or value, but not
both simultaneously. The 1st abstraction of Table 5, thus,
has five ¬ E pairs: <“bottom”, “human side”>, <“top”,
“human side”>, <“side”, “nonhuman side”>, <“side”,
“human bottom”>, and <“side”, “human top”>. Having
antonyms on both key and value, such as <“bottom”, “non-
human side”>, deviates too much from E and is therefore
not considered as a ¬ E pair.

We performed a quantitative study on the recently
released Webex features. Table 6 lists some characteristics
of the features, as well as some summary statistics of the
¬ E formation results. Altogether, Cisco released an aver-
age of 22.5 Webex features over the period of four months
from Aug 2021 to Nov 2021; however, we experimented
about a half of those features as a result of our manual fea-
sibility analysis. In particular, we excluded features related
to hardware upgrade (e.g., support available for Apple iOS
15 as part of Oct 2021’s release) and software integration
(e.g., Microsoft Teams integration: starting and schedul-
ing meetings from message extension as part of Sept 2021’s
release), because our acceptance testing currently focuses
on a specific functional aspect of one software system, i.e.,
Webex. As shown in Table 6, our feature testing approach is
applicable to 49% of the new and changing features, among
which 55% included pictorials in their descriptions. Con-
sidering all the 44 features that we experimented with, the

NL description parts contain an average of 8.4 sentences
per feature, indicating the lightweight documentation of
the external release notes. While our approach takes into
account only the NL parts of the features descriptions, pro-
cessing the pictorials in an automatic way seems to be an
interesting direction for future research.

The bottom of Table 6 shows the results of antonym
searching for the top-20 ranked abstractions. This decision
was informed by the accuracy results presented in Fig. 9.
As mentioned earlier, less antonyms were found for keys
than for values. In fact, all the features in our experiment
resulted in ¬ E based on the abstractions’ values. In terms of
the number of antonyms found, each key returned 1.8 and
each value returned 2.0 on average. As listed in Table 6, the
total number of <key, value> pairs representing ¬ E is 342,
125, 189, and 242 for Aug, Sept, Oct, and Nov, respectively.
Each ¬ E , along with the corresponding E , serves as a unit
of analysis for our feature testing. We classify the results as
follows:

–	 Case 1: untestable means that the formed ¬ E is not
viable to be a test oracle, and hence no feature testing
could be performed. For example, the ¬ E of <“video
interpreting”, “dead video”> formed on the basis of
the 10th abstraction shown in Table 5 is untestable. Case
1 thus offers little value to the software developers or
testers.

Table 6   Characteristics of Webex features released over a four-month period from Aug 2021 to Nov 2021, and ¬ E formation summaries

Aug Sept Oct Nov Average

Feature characteristics # of features released by Cisco 27 16 22 25 22.5
(%) of experimented features 14 (52%) 8 (50%) 10 (45%) 12 (48%) 11 (49%)
average # of sentences per feature 7.3 10.9 8.6 7.9 8.4
(%) of features with pictorials 8 (57%) 4 (50%) 7 (70%) 5 (42%) 6 (55%)
of features with key’s antonyms 3 1 3 2 2.3

¬ E formation summaries # of features with value’s antonyms 14 8 10 12 11
average # of antonyms per key 2.0 1.0 1.6 1.8 1.8
average # of antonyms per value 2.2 1.8 2.0 1.8 2.0
total # of ¬ E formed as <key, value> pairs 342 125 189 242 224.5

Fig. 13   Feature testing results

424	 Requirements Engineering (2022) 27:405–427

1 3

–	 Case 2: boundary condition confirmed suggests that
not only is ¬ E testable, but also the test oracle of Eq. (7)
is supported by the actual feature testing. For instance,
the 3rd abstraction identified for Nov’s support Q &A
and chat during a practice session in Webex Events
feature is E=<“chat”, “online chat”>. Running anto-
nyms() on the value of this E returns ¬ E=<“chat”,
“offline chat”>. Our feature testing did confirm that
E, feature ≠ ¬ E, feature , since an offline chat was disa-
bled to be sent in Webex. Therefore, Case 2 helps to test
the feature fails as expected, increasing the confidence
toward the decision of releasing the feature.

–	 Case 3: unexpectedly failed, such as the testing results
shown in Fig. 12, provides valuable information for the
software development team to catch buggy implementa-
tions, improve the release notes, and create potentially
innovative features as new requirements.

Figure 13 shows our feature testing results in which the
number of analysis units driven by ¬ E is annotated under
each month. Overall, our current use of antonyms() has
64–82% untestable results, making the increase in preci-
sion an important target for future work. As antonyms()
works only for a single word, building a mechanism to han-
dle phrases could potentially reduce the untestable ¬ E . The
boundary condition confirmed case ranges from 16 to 35%
in Fig. 13. If we consider the testable ¬ E’s, then a domi-
nant proportion have led to the testing results confirming the
oracle. On one hand, such findings indicate the viability of
our test oracle formulated in Eq. (7). On the other hand, the
Webex features released by Cisco are indeed of high qual-
ity when tested both positively and negatively in different
environments. Finally, unexpectedly failed cases appear in
a few occasions, demonstrating the additional value offered
by our feature testing approach.

6.5 � Discussions

Our feature testing approach is motivated by the couple of
practical challenges presented in Sect. 6.1. Because choos-
ing the right feature from an entire software system to test
is difficult, we will not choose but instead test each new and
changing feature to be released. Because reasoning about
requirements satisfaction by only observing software test-
ing results is difficult, we will perform testing according to
a well-defined oracle given in Eq. (7).

Such an oracle takes advantage of metamorphic testing,
which is a property-based software testing technique that
has been successfully applied to scientific software systems,
search engines, AI-based applications, among others [81,
82]. In essence, metamorphic testing relies on some domain
properties, such as sine(x)=sine(�---x), to test a software’s

implementation. In many occasions, one may not know the
exact output before testing the software with a single test
case, e.g., the exact value of sine(x) for an arbitrary x might
be unknown due to the implementation’s numerical deci-
sions, the exact search results and their correct ranking of an
arbitrary query may be unknown due to subjectivity and the
lack of knowledge about the user’s search intent, etc. Execut-
ing a software’s implementation with multiple test cases and
then checking whether a desired property would hold is what
metamorphic testing embodies. Our work extends the body
of work on metamorphic testing by asserting the software
property relative to a coupled dual environmental conditions.
This new way of focusing on requirements-level features to
structure metamorphic testing addresses a critical challenge
of metamorphic relation construction [81, 82].

The implications of our work also relate to A/B testing,
which can be regarded as a type of controlled experiment
that compares two variants: A (a control) and B (a treat-
ment) [77]. Modern tech companies including Amazon,
Google, LinkedIn, and Microsoft use A/B testing as a way
to align RE and software testing, as designing and running
a control experiment with actual end users could inform
whether a deployed feature, e.g., integrating Bing’s search
results with social media, influences the overall evaluation
criterion. Auer et al. [83] reported that the least common
type of treatment encountered in the A/B testing literature
was new features, which our work addresses. Our feature
testing approach is complementary to A/B testing. While
A/B testing constructs two different conditions: one with a
new feature and the other without it, our work can be used
to better design the conditions of the treatment, e.g., under
which environmental circumstances the feature is really
experimented and what other factors need to be controlled or
interpreted with caution. The A/B testing results could also
inform the E and ¬ E design of our feature testing approach.

As for the connection between abstraction identification
and ontology engineering, early-RE work such as Sawyer
et al. [2] used the identified abstractions as candidate class
names in UML modeling. In contrast, we focus on iden-
tifying key-value pairs to assist requirements-based test-
ing and, hence, favor attributes such as testability and bug
revealingness.

7 � Conclusions

Automatically finding abstractions that are of particular sig-
nificance in a given domain has attracted much attention
in RE, though the primary focus has been on supporting
early-RE activities such as requirements elicitation and mod-
eling [1–4]. In this paper, we have presented an automated
approach built on five novel NLP patterns to identifying
abstractions in the form of <key, value> pairs. We regard

425Requirements Engineering (2022) 27:405–427	

1 3

such a form to be testable and also select relevant Wikipedia
pages as an indicative corpus. Evaluating our approach with
six software applications in two different domains shows that
the <key, value> pairs are more accurate than the abstrac-
tion candidates generated by contemporary techniques. Ini-
tial findings also indicate our abstractions’ capabilities of
revealing bugs and matching the environmental assumptions
created manually.

Building on the identified abstractions, we introduce a
new way of performing feature testing to overcome a couple
of practical challenges: choosing the right feature to test and
bridging the reasoning about requirements satisfaction from
observing software executions. We extend the automated
support with WordNet’s antonyms() function to help con-
struct an opposing environmental condition for an abstrac-
tion’s key and value. Analyzing the recently released Webex
features shows the viability of the test oracle underlying our
feature testing approach and illustrates the potential innova-
tion that the unexpectedly failed cases could provoke to the
software development project.

Our work can be extended toward several avenues. Empir-
ical studies, including theoretical replications [84, 85], with
more software systems and more application domains are
needed to lend strength to the findings reported here. Moreo-
ver, grouping related abstractions can be explored for uncov-
ering more bugs. Finally, developing a mechanism to find
antonyms for a phrase and even a hash structure, rather than
only for a single English word, might improve the precision
and the utility of our feature testing approach.

Acknowledgements  We thank Sarah Sturmer and Sreelekhaa Naga-
malli Santhoshkumar from the University of Cincinnati for their pre-
liminary work on related research topics and their insightful comments
on this work. The research is partially supported by the National Natu-
ral Science Foundation of China under Grant No. 62192731, 61802374,
62002348, and 62072442, the National Key Research and Development
Program of China under Grant No. 2018YFB1403400, and Youth Inno-
vation Promotion Association CAS.

Data availability  The datasets generated during and/or analyzed during
the current study are available in the Zenodo repository, https://​doi.​org/​
10.​5281/​zenodo.​58583​84.

Declaration 

Conflicts of interest  The authors have no conflicts of interest to dis-
close.

References

	 1.	 Gacitua R, Sawyer P, Gervasi V (2011) Relevance-based
abstraction identification: technique and evaluation. Requir Eng
16(3):251–265

	 2.	 Sawyer P, Rayson P, Cosh K (2005) Shallow knowledge as an aid
to deep understanding in early phase requirements engineering.
IEEE Trans Softw Eng 31(11):969–981

	 3.	 Gacitua R, Sawyer P, Gervasi V (2010) On the effectiveness of
abstraction identification in requirements engineering. In: Pro-
ceedings of the international requirements engineering conference
(RE), Sydney, Australia, September–October 2010, pp 5–14

	 4.	 Goldin L, Berry DM (1997) AbstFinder, a prototype natural lan-
guage text abstraction finder for use in requirements elicitation.
Autom Softw Eng 4(4):375–412

	 5.	 Dwarakanath A, Ramnani RR, Sengupta S (2013) Automatic
extraction of glossary terms from natural language requirements.
In: Proceedings of the international requirements engineering
conference (RE), Rio de Janeiro, Brazil, July 2013, pp 314–319

	 6.	 Arora C, Sabetzadeh M, Briand LC, Zimmer F (2017) Automated
extraction and clustering of requirements glossary terms. IEEE
Trans Softw Eng 43(10):918–945

	 7.	 Gemkow T, Conzelmann M, Hartig K, Vogelsang A (2018) Auto-
matic glossary term extraction from large-scale requirements
specifications. In: Proceedings of the international requirements
engineering conference (RE), Banff, Canada, August 2018, pp
412–417

	 8.	 Yu E (1997) Towards modeling and reasoning support for early-
phase requirements engineering. In: Proceedings of the interna-
tional symposium on requirements engineering (RE), Annapolis,
MD, USA, January 1997, pp 226–235

	 9.	 Ryan K (1993) The role of natural language in requirements
engineering. In: Proceedings of the international symposium on
requirements engineering (RE), San Diego, CA, USA, January
1993, pp 240–242

	10.	 Jin Z (2018) Environment modeling-based requirements engineer-
ing for software intensive systems. Morgan Kaufmann

	11.	 Jackson M (1997) The meaning of requirements. Ann Softw Eng
3:5–21

	12.	 van Lamsweerde A (2009) Requirements engineering: from sys-
tem goals to UML models to software specifications. Wiley

	13.	 Tun TT, Lutz RR, Nakayama B, Yu Y, Mathur D, Nuseibeh B
(2015) The role of environmental assumptions in failures of DNA
nanosystems. In: Proceedings of the international workshop on
complex faults and failures in large software systems (COUF-
LESS), Florence, Italy, May 2015, pp 27–33

	14.	 Knight JC (2002) Safety critical systems: challenges and direc-
tions. In: Proceedings of international conference on software
engineering (ICSE), Orlando, Florida, USA, May 2002, pp
547–550

	15.	 Bhowmik T, Chekuri SR, Do AQ, Wang W, Niu N (2019) The
role of environment assertions in requirements-based testing. In:
Proceedings of the international requirements engineering confer-
ence (RE), Jeju Island, South Korea, September 2019, pp 75–85

	16.	 Peng Z, Rathod P, Niu N, Bhowmik T, Liu H, Shi L, Jin Z (2021)
Environment-driven abstraction identification for requirements-
based testing. In: Proceedings of the international requirements
engineering conference (RE), Notre Dame, IN, USA, September
2021, pp 245–256

	17.	 Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S (2015) The
oracle problem in software testing: a survey. IEEE Trans Softw
Eng 41(5):507–525

	18.	 Niu N, Mahmoud A (2012) Enhancing candidate link generation
for requirements tracing: the cluster hypothesis revisited. In: Pro-
ceedings of the international requirements engineering conference
(RE), Chicago, IL, USA, September 2012, pp 81–90

	19.	 Wang W, Gupta A, Niu N, Xu LD, Cheng J-RC, Niu Z (2018)
Automatically tracing dependability requirements via term-based
relevance feedback. IEEE Trans Ind Inf 14(1):342–349

	20.	 Wang W, Niu N, Liu H, Niu Z (2018) Enhancing automated
requirements traceability by resolving polysemy. In: Proceedings

https://doi.org/10.5281/zenodo.5858384
https://doi.org/10.5281/zenodo.5858384

426	 Requirements Engineering (2022) 27:405–427

1 3

of the international requirements engineering conference (RE),
Banff, Canada, August 2018, pp 40–51

	21.	 Wermter J, Hahn U (2005) Finding new terminology in very large
corpora. In: Proceedings of the international conference on knowl-
edge capture (K-CAP), Banff, Canada, October 2005, pp 137–144

	22.	 Leveson NG (1995) Safeware: system safety and computers.
Addison-Wesley

	23.	 Hull E, Jackson K, Dick J (2010) Requirements engineering.
Springer

	24.	 Rahimi M, Xiong W, Cleland-Huang J, Lutz RR (2017) Diag-
nosing assumption problems in safety-critical products. In: Pro-
ceedings of the international conference on automated software
engineering (ASE), Urbana, IL, USA, October–November 2017,
pp 473–484

	25.	 Alenazi M, Niu N, Savolainen J (2020) A novel approach to
tracing safety requirements and state-based design models. In:
Proceedings of international conference on software engineering
(ICSE), Seoul, South Korea, June–July 2020, pp 848–860

	26.	 Alrajeh D, Cailliau A, van Lamsweerde A (2020) Adapting
requirements models to varying environments. In: Proceedings
of international conference on software engineering (ICSE),
Seoul, South Korea, June–July 2020, pp 50–61

	27.	 Yang C, Liang P, Avgeriou P (2018) Assumptions and their
management in software development: a systematic mapping
study. Inform Softw Technol 94:82–110

	28.	 Garlan D, Allen R, Ockerbloom J (2009) Architectural mis-
match: why reuse is still so hard. IEEE Softw 26(4):66–69

	29.	 Jin X, Khatwani C, Niu N, Wagner M, Savolainen J (2016) Prag-
matic software reuse in bioinformatics: how can social network
information help? In: Proceedings of international conference
on software reuse (ICSR), Limassol, Cyprus, June 2016, pp
247–264

	30.	 Bhuta J, Boehm B (2007) A framework for identification and reso-
lution of interoperability mismatches in COTS-based systems. In:
Proceedings of the international workshop on incorporating cots
software into software systems: tools and techniques (IWICSS),
Minneapolis, MN, USA, May 2007

	31.	 Bazaz A, Arthur JD, Tront JG (2006) Modeling security vulner-
abilities: a constraints and assumptions perspective. In: Proceed-
ings of the international symposium on dependable, autonomic
and secure computing (DASC), Indianapolis, IN, USA, Septem-
ber–October 2006, pp 95–102

	32.	 Wang W, Dumont F, Niu N, Horton G (2020) Detecting software
security vulnerabilities via requirements dependency analysis.
IEEE Trans Softw Eng 48(5):1665–1675

	33.	 Kroll P, Kruchten P (2003) The rational unified process made
easy: a practitioner’s guide to the RUP. Addison-Wesley

	34.	 Laplante PA (2007) What every engineer should know about soft-
ware engineering. CRC Press

	35.	 Unterkalmsteiner M, Gorschek T, Feldt R, Klotins E (2015)
Assessing requirements engineering and software test align-
ment—five case studies. J Syst Softw 109:62–77

	36.	 Uusitalo EJ, Komssi M, Kauppinen M, Davis AM (2008) Linking
requirements and testing in practice. In: Proceedings of the inter-
national requirements engineering conference (RE), Barcelona,
Spain, September 2008, pp 265–270

	37.	 Flammini F, Mazzocca N, Orazzo A (2009) Automatic instantia-
tion of abstract tests on specific configurations for large critical
control systems. Softw Test Verif Reliab 19(2):91–110

	38.	 Miller T, Strooper PA (2012) A case study in model-based testing
of specifications and implementations. Softw Test Verif Reliab
21(1):33–63

	39.	 de Santiago Júnior VA, Vijaykumar NL (2012) Generating model-
based test cases from natural language requirements for space
application software. Softw Test Verif Reliab 20(1):77–143

	40.	 Siegl S, Hielscher K-S, German R (2010) Model based require-
ments analysis and testing of automotive systems with timed usage
models. In: Proceedings of the international requirements engi-
neering conference (RE), Sydney, Australia, September–October
2010, pp 345–350

	41.	 Garousi V, Bauer S, Felderer M (2020) NLP-assisted software
testing: a systematic mapping of the literature. Inform Softw Tech-
nol 126:106 321:1–106 321:20

	42.	 Fischbach J, Vogelsang A, Spies D, Wehrle A, Junker M, Freuden-
stein D (2020) SPECMATE: automated creation of test cases from
acceptance criteria. In: Proceedings of the international confer-
ence on software testing, validation and verification (ICST), Porto,
Portugal, October 2020, pp 321–331

	43.	 Skoković P, Rakić-Skoković M (2010) Requirements-based testing
process in practice. Int J Ind Eng Manag 1(4):155–161

	44.	 Meneely A, Smith B, Williams L (2012) iTrust electronic health
care system: a case study. In: Cleland-Huang J, Gotel O, Zisman
A (eds) Software and systems traceability. Springer

	45.	 Niu N, Brinkkemper S, Franch X, Partanen J, Savolainen J (2018)
Requirements engineering and continuous deployment. IEEE
Softw 35(2):86–90

	46.	 Zave P, Jackson M (1997) Four dark corners of requirements
engineering. ACM Trans Softw Eng Methodol 6(1):1–30

	47.	 Gunter CA, Gunter EL, Jackson M, Zave P (2000) A refer-
ence model for requirements and specifications. IEEE Softw
17(3):37–43

	48.	 Mahmoud A, Niu N (2015) On the role of semantics in auto-
mated requirements tracing. Requir Eng 20(3):281–300

	49.	 Ezzini S, Abualhaija S, Arora C, Sabetzadeh M, Briand LC
(2021) Using domain-specific corpora for improved handling
of ambiguity in requirements. In: Proceedings of international
conference on software engineering (ICSE), Madrid, Spain,
May 2021, pp 1485–1497

	50.	 Chernov S, Iofciu T, Nejdl W, Zhou X (2006) Extracting seman-
tics relationships between wikipedia categories. In: Proceed-
ings of the workshop on semantic Wikis (SemWiki), Budva,
Montenegro

	51.	 Beautiful S. A Python library for pulling data out of HTML and
XML Files. Last accessed on 2022/09/09 16:36:31. [Online].
Available: https://​www.​crummy.​com/​softw​are/​Beaut​ifulS​oup/

	52.	 Abualhaija S, Arora C, Sabetzadeh M, Briand LC, Vaz E (2019)
A machine learning-based approach for demarcating require-
ments in textual specifications. In: Proceedings of the interna-
tional requirements engineering conference (RE), Jeju Island,
South Korea, September 2019, pp 51–62

	53.	 Lin X, Peng Z, Niu N, Wang W, Liu H (2021) Finding metamor-
phic relations for scientific software. In: Proceedings of inter-
national conference on software engineering (ICSE) companion
volume, Madrid, Spain, May 2021, pp 254–255

	54.	 spaCy. Industrial-strength natural language processing in
Python. Last accessed on 2022/09/09 16:36:31. [Online]. Avail-
able: https://​spacy.​io/

	55.	 Kübler S, McDonald R, Nivre J (2009) Dependency parsing.
Morgan & Claypool Publishers

	56.	 Dalpiaz F, Dell’Anna D, Aydemir FB, cCevikol S (2019)
Requirements classification with interpretable machine learning
and dependency parsing. In: Proceedings of the international
requirements engineering conference (RE), Jeju Island, South
Korea, September 2019, pp 142–152

	57.	 Cohen KB, Christiansen T, Hunter LE (2011) Parenthetically
speaking: classifying the contents of parentheses for text min-
ing. In: Proceedings of the annual symposium on biomedical
and health informatics (AMIA), Washington, DC, USA, October
2011, pp 267–272

	58.	 Klaussner C, Zhekova D (2011) Pattern-based ontology con-
struction from selected Wikipedia pages. In: Proceedings of the

https://www.crummy.com/software/BeautifulSoup/
https://spacy.io/

427Requirements Engineering (2022) 27:405–427	

1 3

international conference on recent advances in natural language
processing (RANLP) Student Research Workshop, Hissar, Bul-
garia, September 2011, pp 103–108

	59.	 Hearst MA (1992) Automatic acquisition of hyponyms from
large text corpora. In: Proceedings of the international confer-
ence on computational linguistics (COLING), Nantes, France,
August 1992, pp 539–545

	60.	 Klaussner C, Zhekova D (2011) Lexico-syntactic patterns for
automatic ontology building. In: Proceedings of the interna-
tional conference on recent advances in natural language pro-
cessing (RANLP) Student Research Workshop, Hissar, Bul-
garia, September 2011, pp 109–114

	61.	 Finin TW (1980) The semantic interpretation of nominal com-
pounds. In: Proceedings of the annual national conference on
artificial intelligence (AAAI), Stanford, CA, USA, August 1980,
pp 310–312

	62.	 Peng Z, Niu N (2021) Co-AI: a Colab-based tool for abstraction
identification. In: Proceedings of the international requirements
engineering conference (RE), Notre Dame, IN, USA, September
2021, pp 420–421

	63.	 Liu H, Shen M, Zhu J, Niu N, Li G, Zhang L (2022) Deep learning
based program generation from requirements text: are we there
yet? IEEE Trans Softw Eng 48(4):1268–1289

	64.	 Nyamawe AS, Liu H, Niu N, Umer Q, Niu Z (2019) Automated
recommendation of software refactorings based on feature
requests. In: Proceedings of the international requirements engi-
neering conference (RE), Jeju Island, South Korea, September
2019, pp 187–198

	65.	 Nyamawe AS, Liu H, Niu N, Umer Q, Niu Z (2018) Recommend-
ing refactoring solutions based on traceability and code metrics.
IEEE Access 6:49–475

	66.	 Nyamawe AS, Liu H, Niu N, Umer Q, Niu Z (2020) Feature
requests-based recommendation of software refactorings. Empir
Softw Eng 25(5):4315–4347

	67.	 Niu N, Savolainen J, Bhowmik T, Mahmoud A, Reddivari S
(2012) A framework for examining topical locality in object-
oriented software. In: Proceedings of the annual IEEE computer
software and applications conference (COMPSAC), Izmir, Turkey,
July 2012, pp 219–224

	68.	 OpenEMR. A medical practice management software system
supporting electronic medical records (EMR). Last accessed on
2022/09/09 16:36:31. [Online]. Available: https://​en.​wikip​edia.​
org/​wiki/​OpenE​MR

	69.	 OpenMRS. A collaborative open-source project on medical record
systems (MRS). Last accessed on 2022/09/09 16:36:31. [Online].
Available: https://​en.​wikip​edia.​org/​wiki/​OpenM​RS

	70.	 OpenEMR Features. Features of OpenEMR. Last accessed on
2022/09/09 16:36:31. [Online]. Available: https://​www.​open-​emr.​
org/​wiki/​index.​php/​OpenE​MR_​Featu​res

	71.	 OpenMRS User Guide. A complete user guide for OpenMRS. Last
accessed on 2022/09/09 16:36:31. [Online]. Available: https://​
wiki.​openm​rs.​org/​displ​ay/​docs/​User+​Guide

	72.	 Maier D (1978) The complexity of some problems on subse-
quences and supersequences. J ACM 25(2):322–336

	73.	 Lin X, Simon M, Peng Z, Niu N (2021) Discovering metamorphic
relations for scientific software from user forums. Comput Sci Eng
23(2):65–72

	74.	 Hsia P, Kung DC, Sell C (1997) Software requirements and
acceptance testing. Ann Softw Eng 3:291–317

	75.	 Haugset B, Hanssen GK (2008) Automated acceptance testing: a
literature review and an industrial case study. In: Proceedings of
the agile development conference (AGILE), Toronto, ON, Canada,
August 2008, pp 27–38

	76.	 Cisco. What’s new for the latest channel of Webex meetings. Last
accessed on 2022/09/09 16:36:31. [Online]. Available: https://​
help.​webex.​com/​en-​US/​artic​le/​xcwws1/​What’s-​New-​for-​the-​Lat-
est-​Chann​el-​of-​Webex-​Meeti​ngs

	77.	 Kohavi R, Tang D, Xu Y (2020) Trustworthy online controlled
experiments: a practical guide to A/B testing. Cambridge Univer-
sity Press

	78.	 NLTK Project. Natural language toolkit. Last accessed on
2022/09/09 16:36:31. [Online]. Available: https://​www.​nltk.​org/

	79.	 Lilian JF, Sundarakantham K, Rajashree H, Shalinie SM (2019)
SSE: semantic sentence embedding for learning user interactions.
In: Proceedings of the international conference on computing,
communication and networking technologies (ICCCNT), Kanpur,
India, July 2019, pp 1–5

	80.	 Killawala A, Khokhlov I, Reznik L (2018) Computational intel-
ligence framework for automatic quiz question generation. In:
Proceedings of the international conference on fuzzy systems
(FUZZ-IEEE), Rio de Janeiro, Brazil, July 2018, pp 1–8

	81.	 Segura S, Fraser G, Sánchez AB, Cortés AR (2016) A survey on
metamorphic testing. IEEE Trans Softw Eng 42(9):805–824

	82.	 Chen TY, Kuo F-C, Liu H, Poon P-L, Towey D, Tse TH, Zhou ZQ
(2018) Metamorphic testing: a review of challenges and opportu-
nities. ACM Comput Surv 51(1):4:1-4:27

	83.	 Auer F, Ros R, Kaltenbrunner L, Runeson P, Felderer M
(2021) Controlled experimentation in continuous experi-
mentation: knowledge and challenges. Inform Softw Technol
134:106 551:1–106 551:16

	84.	 Niu N, Koshoffer A, Newman L, Khatwani C, Samarasinghe C,
Savolainen J (2016) Advancing repeated research in requirements
engineering: a theoretical replication of viewpoint merging. In:
Proceedings of the international requirements engineering confer-
ence (RE), Beijing, China, September 2016, pp 186–195

	85.	 Khatwani C, Jin X, Niu N, Koshoffer A, Newman L, Savolainen J
(2017) Advancing viewpoint merging in requirements engineer-
ing: a theoretical replication and explanatory study. Requir Eng
22(3):317–338

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

https://en.wikipedia.org/wiki/OpenEMR
https://en.wikipedia.org/wiki/OpenEMR
https://en.wikipedia.org/wiki/OpenMRS
https://www.open-emr.org/wiki/index.php/OpenEMR_Features
https://www.open-emr.org/wiki/index.php/OpenEMR_Features
https://wiki.openmrs.org/display/docs/User+Guide
https://wiki.openmrs.org/display/docs/User+Guide
https://help.webex.com/en-US/article/xcwws1/What's-New-for-the-Latest-Channel-of-Webex-Meetings
https://help.webex.com/en-US/article/xcwws1/What's-New-for-the-Latest-Channel-of-Webex-Meetings
https://help.webex.com/en-US/article/xcwws1/What's-New-for-the-Latest-Channel-of-Webex-Meetings
https://www.nltk.org/

	Testing software’s changing features with environment-driven abstraction identification
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Abstraction identification in requirements engineering
	2.2 Environmental assumptions
	2.3 Requirements engineering and testing

	3 Environmental assumptions and requirements-based testing
	4 Abstraction identification for environmental assumptions
	4.1 Preprocessing
	4.2 Extracting abstractions
	4.3 Ordering abstractions

	5 Evaluating the effectiveness and relevance of identified abstractions
	5.1 Domains and subject systems
	5.2 Effectiveness of abstraction identification
	5.3 Comparison with manually formulated assumptions
	5.4 Bug revealing capability of abstractions
	5.5 Threats to validity

	6 Feature testing in opposing environmental conditions
	6.1 Revisiting bug revealingness
	6.2 Acceptance test cases
	6.3 Testing software’s changing features
	6.4 Quantitative analysis
	6.5 Discussions

	7 Conclusions
	Acknowledgements
	References

