
Software Requirements Engineering: The Need for Systems
Engineering and Literacy

Roel WieringaRoel Wieringa
Department of Computer Science, University of Twente, Enschede, The Netherlands

1. Introduction

This viewpoint continues the favourite comparison
between house engineering and software engineering,
recently brought forward again by Dan Berry [1]. In the
past eight years, I had two houses renovated and a third
one built from scratch, which, after delivery, I had
extended immediately by employing a different builder.
Each of these four (rebuilding processes involved one
main contractor and up to 10 subcontracting builders,
who dealt with electricity, plumbing, painting, tiling,
plastering, the central heating system, concrete floors,
parquet floors, stairs, the kitchen, curtains, sun screens,
etc. Some of these processes also involved negotiations
with independent suppliers in the Netherlands and
Germany, each with different trade laws. Financially
this is not a very attractive sequence of moves, not to
speak of the stress that this caused in agendas that are
already overburdened, but a great opportunity to learn
first hand about house design and implementation.

2. The Moral

I indicated three phenomena that also appear in software
requirements engineering: First. I did not build or rebuild

these houses myself, I had them built. This created a

need for communication with the builders, a process in

which house builders do not seem to fare better than

software builders. As a consequence, requirements

engineering sometimes continued until after the product

(a house) was delivered. Second, with so many parties

involved, a need for coordination arose that I have come

to believe is the most important function of systems

engineering to ensure success, i.e. user satisfaction, of

the building process and product. Third, I was going to

live in these buildings. In three cases, I already lived in

them during the rebuilding process; in the fourth case, I

lived somewhere else and had to frequently interrupt my

work to check that what was being built was what I

wanted. Likewise for software: software creates a

semantic universe in which people will live for an

important part of their lives. The fact that this universe

consists of concepts, and is therefore physically

invisible, means that it is even closer to us than the

physical world in which we live. Software becomes part

of our minds because it changes the concepts in terms of

which we think. Like the evaluation of the quality of a

house, evaluating the quality of software has an

important emotional aspect that engineers and builders

know exists but that they cannot very well deal with.

They are selected for their jobs because they know how

to deal with devices, materials, or software, not because

they know how to deal with people. House users deal

Requirements Eng (2001) 6:132–134
� 2001 Springer-Verlag London Limited Requirements

Engineering

Viewpoints

‘Viewpoints’ is a regular section in Requirements Engineeering for airing readers’ views on requirements
engineering research and practice. Contributions that describe results, experiences, biases and research agendas
in requirements engineering are particularly welcome. ‘Viewpoints’ is an opportunity for presenting technical
correspondence or subjective arguments. So, whether you are a student, teacher, researcher or practitioner, get
on your soapbox today and let us know what’s on your mind . . .

Please submit contributions electronically to Viewpoints Editor, Didar Zowghi (didar@it.uts.edu.au).
Contributions less than 2000 words in length are preferred.

Correspondence and offprint requests to: R. Wieringa, Department of
Computer Science, University of Twente, PO Box 217, 7500 AE The
Netherlands. Email: roelw@cs.utwente.nl



with unsatisfactory properties of their house by fiddling
around with the house after delivery for several years,
until it fits like an old shoe (and perhaps looks like one).
Most software users are less fortunate since they have to
live with what is delivered to them, adapting to the
software where it does not fit their needs.

But I am getting ahead of my story. Let me first
recapitulate the similarities between house engineering
and software engineering.

3. The Story

First, all specifications are incomplete, and necessarily
so: a complete house design would be as big as a house.
Second, what is specified is often not understood by the
user, even if he thinks he understands. Third, what is
specified is not always what is built: many builders do not
like to read the specification but simply build what they
think is normal; which often is not what we specified. At
one time, we found some of the builders that did use a
specification were using the specification of the
neighbour’s house. In their daily routine, they had
forgotten to check the specification identifier. We have
also caught builders using an outdated version of the
specification – how are they to know there is a more
recent one? Fourth, what is specified sometimes cannot
be built. We found that when this happens most builders
prefer to solve the problem themselves. Those who do
discuss the problem with the user talked to us in
impenetrable jargon that made the problem seem much
more difficult than it was. Fifth, of course we could not
state all our requirements up front. Seeing the house take
shape gave us so many ideas that we regularly updated
the specification – at a cost that seemed to rise
exponentially with time. Dan Berry suggests this is a
good strategy from a builder’s point of view but I can
assure you that it does not increase user satisfaction.
Trying to increase our satisfaction by improving the
specification, we became disgruntled by the price that we
had to pay for the update. This does not help to build a
good customer–producer relationship, which in turn does
not facilitate dealing with the numerous small problems
that the builder, by contract, should solve after the house
is delivered. Sixth, each subcontractor has its own view
of the product. These views must be consistent, and the
work performed according to them must be coordinated.
The dependencies between these views turned out to be
circular – nothing could be decided until everything was
decided – and they created interference between dead-
lines. If planning became difficult because of this, it
became nearly impossible due to turbulence in the project
environment, such as an excessive amount of rain,
shortage of manpower, and theft from the building site.

So what can we learn from this? First, that house
building is an infinite source of dinner table stories, or
better still, strong drinking stories for your buddies.
Second, we can learn some lessons about building
systems and building their specifications.

4. Building Systems

A system is a coherent collection of elements that
interact so that useful properties for the environment
may emerge. The keyword here is coherence. To achieve
coherence, all subcontractors, and the views they have
on the system, need to be coordinated with each other.
To achieve that the elements of the system jointly deliver
a useful service; they need to be aligned with the user
requirements. This is exactly the province of systems
engineering, which encompasses a mix of requirements
engineering and project management all aimed at
achieving coherence and the emergence of useful
properties of the system [2]. The above story illustrates
that bad house engineering is very similar to bad
software engineering. Both are examples of bad
systems engineering. Our house-building processes
could obviously have been improved by using systems
engineering principles for managing changing require-
ments, updating the specification, managing subcontrac-
tors, and coordinating different views on the system.

5. Building Textual Information

Although house engineering and software engineering
are agreed to be examples of systems engineering, they
differ in the fact that software consists of textual
information and houses do not. Software is a set of
instructions written for a machine to execute. This
entails other well-known differences, such as (1)
software is invisible because it is conceptual, (2) it
seems easily changeable and (3) there is no clear break
between specification (writing text) and building
(writing more text!), as there is in all other branches of
engineering. A further consequence is that (4) the
product behaves exactly as we programmed. This differs
from the kind of engineering where we put together
physical material so that the resulting system of
materials has certain desirable properties. These
materials are not defined by our specifications but
described by them. They do not, by definition, behave
exactly as we programmed. They behave as physical
laws tell them to do, not as we tell them to do. A final
consequence is that (5) software products are symbol-
manipulating products. They become part of the user’s
semantic universe. This means that software systems

Viewpoints 133



engineering becomes a conceptual exercise, not only in
its requirements engineering part, but also in its job of
coordinating stakeholders, specifications, views and
building activities. It is all right for a house builder to
fail to conceptualise a problem he encountered. He did
not have the training to do this, nor is there a need to do
it, because he can physically show what the problem is.
Software system engineers should have the training to
conceptualise construction problems in advance during
discussions with the user, because software is conceptual
and there is no other way to discuss problems with the
user.

6. Requirements Engineering Education

A consequence of these observations is that requirements
engineering education should not only contain a course
on systems engineering, but also a course on technical
writing. Current courses on technical writing explain
how to write technical documentation and user manuals
but do not deal with writing requirements. Kovitz [3] is
an exception to this, but then this is a book about
requirements, not about technical writing. More should
be done in this area.
Requirements engineers should be aware of the fact

that person-to-person communication contains a limit-
less number of unspoken assumptions, some of which
may have to be uncovered during the conversation. This
is relevant when the conversation is about a product

design, because it is one of the mechanisms of
requirements evolution. Much of the activity of
engineering consists of communicating about a product
between people from different disciplines. Systems
engineering provides a means of communication across
disciplines, and requirements engineering should like-
wise deal with unspoken assumptions and desires and
make them explicit. Where this requires good technical
writing skills for any kind of requirements engineering,
in the case of software requirements engineering it
requires additional skills in combining clarity with
precision of expression. In software requirements
engineering, language is not only the means of
communication with other people, but also the basis
for a program that must be executed by a machine. That
leaves no room for vagueness. Technical writing skills
are more essential to good software requirements
engineering than skills in formal specification or skills
in using UML diagrams and structured analysis.

References

1. Berry DM. Software and house requirements engineering: lessons
learned in combating requirements creep. Req Eng 1998;3:242–
244

2. Stevens R, Brook P, Jackson K, Arnold S. Systems engineering:
coping with complexity. Prentice-Hall, Englewood Cliffs, NJ, 1998

3. Kovitz BL. Practical Software requirements: a manual of content
and style. Manning, 1998

134 R.Wieringa


